
USING THE RELATIONAL MODEL TO CAPTURE

TOPOLOGICAL INFORMATION OF SPACES

PATRICK ERIK BRADLEY AND NORBERT PAUL

Abstract. Motivated by research on how topology may be a helpful founda-
tion for building information modeling (BIM), a relational database version
of the notions of chain complex and chain complex morphism is defined and
used for storing cw-complexes and their morphisms, hence instances of build-
ing projects and different views upon them, into relational databases. In many
cases, this can be done without loss of topological information. The equiva-
lence of categories between sets with binary relations and Alexandrov spaces is
proven and used to incorporate the relational complexes into the more general
setting of topological databases. For the latter, a topological version of a re-
lational query language is defined by transferring the usual relational algebra
operators into topological constructions. In the end, it is proven that such a
topological version of relational algebra in general must be able to compute
the transitive closure of a relation.

1. Introduction

In building information modeling (BIM), there are many important topological
properties of architectural buildings which must be representable by such a model.
If, for example, two walls of a building are adjacent in a common edge, it must
be possible to retrieve this adjacency information from the corresponding data
model in order to be able to compute important planning information like heat
flows or structural performance. In facility management, as another example, one
often wants to know by which paths a room is accessible—such information enables
sophisticated access control planning.

Spatial modelling, such as product data modelling, volume modelling or ge-
ographic information systems, is always confronted with topological information.
Hence, the storage and retrieval of topological information of spaces is an important
issue in these domains. In geographic information systems topologies are stored us-
ing graphs. The data structures used there are very similar to those used by those
volume modelers which are based on so-called boundary representation (B-rep)
techniques [1]. On the other hand, in algebraic topology the notion of complex is a
natural generalisation of B-rep modeling to higher dimension.

An important issue in the encoding of spaces is, how much topological informa-
tion is kept in the data model. It is well-known, however, that already for graphs
the chain complex corresponding to some given graph does not recover its isomor-
phism class. This means that there is a loss in topological information. There are
different kinds of remedies for this problem: one well known such is implemented
as DIME (Dual Independent Map Encoding) which works well for planar graphs
and which is frequently used in geoinformation systems. Another approach is by

Date: April 25, 2008.

1

2 PATRICK ERIK BRADLEY AND NORBERT PAUL

storing the local observation structures around vertices, a method which allows
generalisation to higher dimension [2].

The usual way of dealing with building information in architecture is to read,
write and exchange files. As an alternative, we propose the usage of a common
database. Traditionally, this is accomplished by a relational database server. How-
ever, we advocate to extend their functionality to handling information of at least
three-dimensionsional spaces. Our aim here is to lay the theoretical foundation
upon which general spatial information systems can be built.

There exists a zoo of data structures for spatial modeling, like the above men-
tioned DIME, the Winged Edge structure, or the topology-resources in ISO STEP
10303-42, which are mostly based on cell complexes. In this article, we lay a for-
mal foundation for such data structures. In particular, we give a generalisation of
chain complex which encaptures more topological information than the usual chain
complexes by using partial matrices as boundary operators.

As our motivation stems from building information modeling, we state that
architectural design amounts to partitioning space in such a way that one obtains a
finite cw-complex. Of course, this depends on postulating that architectural design
is making explicit a finite partitioning of space in the first place.

From the point of view we take, it is very natural to use a categorial language,
and we keep this throughout the whole article. The reason is that not only spaces
themselves are of interest, but also their considerations at various levels of detail or
their being subject to modifications. This necessitates the modelling of continuous
maps between topological spaces.

In fact, we observe here that any set with a binary relation on it (i.e. a simple
graph) is essentially a so-called Alexandrov topological space, and every Alexandrov
space has such a graph. These simple graphs are called by us topological datatypes or
topological databases, as we have their obvious database implementations in mind.
We prove that the category of topological datatypes is equivalent to the category
of Alexandrov spaces.

Cw-complexes fit into the picture, because there is a functor from these to topo-
logical datatypes. We describe the essential image of this functor in terms of the
graphs which the corresponding relations give.

Our main result for spatial modeling is a surprisingly simple relational database
scheme for chain complexes of arbitrary dimension in which this dimension is given
by an attribute only and which is applicable for all finite topological spaces. An-
other result in database theory is the fact that for computing various topological
operations and for checking maps on continuity, in general the transitive closure of
relations needs to be computed.

After Section 2 which briefly introduces the notions from topology used in this
article, Section 3 discusses the topological aspects of architecture and postulates
the importance of cw-complexes in architectural design, of course from a BIM
perspective.

In Section 4, we introduce the notion of relational complex which allows marked
chain complexes to be transferred into a relational database1. It seems natural, from
the point of view of relational databases, to use partial matrices for representing
the boundary operator. As a consequence, more topological information can be

1The step therefrom to an object oriented implementation is trivial.

USING THE RELATIONAL MODEL 3

recovered than with usual chain complexes, if the complex comes from a finite
cw-complex. The corresponding category is called DChainComp.

In Section 5, we prove the equivalence of the category DTop, consisting of
sets with a binary relation on it, and the category Alex whose objects are the
Alexandrov topological spaces with continuous maps as morphisms. This slightly
generalises a result by Alexandrov in [3], where he proved the equivalence in the
special case of sets having a partial ordering relation and a special class of T0-
spaces. Even if Alexandrov at his time had not the language of categories and
functors at hand, we feel we should attribute our result of this section to him,
because (the translation into the categorial language) of his proof carries over in
a straightforward manner to the more general situation. Any combinatorial cw-
complex yields in a natural way a set with a directed acyclic graph ordering on it,
and is thus covered by Alexandrov’s result.

In Section 6, we perform some topological constructions in DTop by giving
relations which generate the constructed topologies. In fact, our constructions are
the initial and final topologies and special cases thereof. In particular the standard
operators of relational algebra are such special cases. Finally, we prove the necessity
of the transitive closure computation in any query language which decides continuity
of maps between Alexandrov spaces, or which computes any initial topology.

A part of the results from this article has been announced without proofs in [4].
The ideas of viewing architecture as finite topological space and of extending the
relational model by topology are attributed to the second author and are expanded
in his dissertation [5]. A first prototypical implementation is discussed in [6].

2. Topological preliminaries

We assume familiarity with the basic notions from set-theoretic and algebraic
topology as well as some knowledge of the language of categories and functors. The
aim of this section is to settle definitions and notations of objects treated in this
article.

A chain complex will be understood as an infinite sequence of Z-modules Cn

C : . . .
∂n+1 // Cn

∂n // Cn−1
∂n−1 // . . .

with the usual property ∂n−1 ◦ ∂n = 0 for all n ∈ Z. We will also consider it in its
equivalent form as a pair (C =

⊕

Cn, ∂) with C a graded abelian group and the
boundary operator ∂ : C → C having the properties

∂(Cn) ⊆ Cn−1 and ∂2 = 0.

All our complexes will satisfy Cn = 0 for n < 0 and most complexes will be finite.
The latter means that all but finitely many of the Cn will be the zero module 0. All
modules occurring in our complexes will be finitely generated free abelian groups.
These have the advantage of always having a basis. By fixing a basis for a given
module, we obtain a marked chain complex. Together with the chain maps (also
called morphisms of chain complexes), these form the category MChainComp.
Recall that chain maps f : (C, ∂) → (C ′, ∂′) are linear maps which respect the
boundary operators: f ◦ ∂ = ∂ ′ ◦ f .

Of particular interest in this article are cw-complexes with finitely many cells.
We will call such a finite cw-complex or, by abuse of language, just cw-complex.
Recall that a cellular map of cw-complexes takes n-cells to m-cells with m ≤ n.

4 PATRICK ERIK BRADLEY AND NORBERT PAUL

The category of cw-complexes will be denoted by CW. There is the well-known
functor CW → MChainComp which takes each cw-complex X to the marked
chain complex C(X) whose basis is the set B of cells of X . The boundary operator
∂ is defined on n-cells b ∈ Bn as

∂(b) =
∑

c∈Bn−1

[b : c] · c,

where [b : c] ∈ Z is the degree of the map fbc between spheres Sn induced by the
map which attaches b to X along its boundary Sn:

fbc : Sn−1 → Xn−1/(Xn−1 \ b) ∼= Sn−1,

where Xn−1 is the n − 1-skeleton of X . A significant portion of this article will
discuss a relational version of this functor.

A combinatorial cw-complex is the quotient of a cw-complex X by the equiva-
lence relation whose classes are precisely the cells. It is endowed with the quotient
topology of the weak topology of X . Together with the continuous maps, they form
the category CombCW. Allowing only the cellular maps as morphisms, we obtain
the subcategory CombCWc.

3. Architectural design and complexes

Our initial motivation for our work was the assumption, that the topological
spaces arising from architecture can be helpful for the development of building
information systems (BIM). These spaces are finite topological spaces obtained by
partitioning the real Euclidean space R

n into finite pieces representing architectural
design. We will say that this partition is a finite representation of n-space. Note
that we do not restrict to the case of dimension three for two reasons: firstly, the
theory is sufficiently general to handle any finite dimension; secondly, the space
which encaptures all relevant building information is itself usually more than three-
dimensional.

An architectural space has some similarities to a cw-complex. It is composed of
manifolds instead of cells, but these manifolds still cover a compact subspace of the
n-dimensional real space.

Definition 3.1 (Architectural representation). Let ∼ be a finite representation of
R

n, and K ⊆ R
n a compact subset. Let ∼K :=∼ |K×K be the restriction of ∼

to K × K. We say that the pair (K,∼K) is an architectural representation, if
K is a union of equivalence classes for ∼, and each equivalence class e for ∼ is
homeomorphic to an open connected subset of some R

q for some q ∈ N. We call e
an architectural element in (X,∼K) and q the dimension of e.

For two architectural representations (K,∼) and (S,≈) we call a continuous
mapping f : K → S an (architectural) representation mapping if the pre-image
f−1([s]) of each equivalence class [s] ∈ S/≈ is a union of equivalence classes in
K/∼. We then write f : (K,∼) → (S,≈) 2

Remark 3.2. It is a well known result from algebraic topology that if U is a subset
of R

n homeomorphic to some open subset of R
q, then necessarily q ≤ n.

Remark 3.3. A given representation mapping f : (K,∼) → (S,≈) induces a con-
tinuous mapping

f≈ : K/∼ → S/≈, [k] 7→ f≈([k]) := [f(k)]

USING THE RELATIONAL MODEL 5

between the quotient spaces. The composition of two representation mappings is
a representation mapping, too, and the identity id : (K,∼) → (K,∼) is also a
representation mapping. Hence, the architectural representations together with
the representation mappings form a category which we denote by ARep.

An architectural element is a cell with possibly some holes cut out. Such an ele-
ment may be the facade, a room, a window glass. Later we will become less partic-
ular with “homeomorphic” and allow a certain thickness of architectural elements.
Then a door qualifies as a 2-dimensional element and its frame has dimension 1.

We postulate the following property of architecture:

Postulate 1. Architectural design is the making explicit of an architectural repre-
sentation of R

n.

This postulate still allows finite partitionings which cannot be refined into finite
cw-complexes. So we restrict architectural design in a way such that the similarity
to cw-complexes will become even stronger.

Postulate 2. Any architectural representation (K,∼) of an n-space made by ar-
chitectural design in practice has a refinement ≈ of ∼K such that (K,≈) is a finite
cw-complex.

By a refinement of an equivalence relation ∼ on K we mean an equivalence
relation ≈ on K such that

x ≈ y =⇒ x ∼ y

holds true for all x, y ∈ K. Thus, by Remark 3.2 the equivalence classes of the
refinement ≈ in Postulate 2 are indeed q-cells for q between 0 and n.

The sections to follow are an individual treatment of the two postulated topo-
logical aspects of architectural space: set-theoretic versus algebraic.

4. The category of relational schemes for chain complexes

We give a straightforward definition of a chain complex within the context of the
relational model. This means that partial matrices become important, because the
matrices occurring in the context of marked complexes usually are so-called sparse
matrices having lots of zero entries which can be removed to save storage space.
We do not want to remove all zero entries, however, because some of them are too
useful to be discarded.

4.1. Partial matrices. Here, we review some matter about partial matrices which
suits our purposes, and fix some notation.

Recall that a matrix with integer values is a map

A : I × J → Z, (i, j) 7→ αij ,

where I and J are sets. If I and J are finite of cardinalities m and n, then we have
an m × n-matrix.

Definition 4.1 (Partial matrix). A partial (integer) matrix A = (αij) is a partial
map

A :⊆ I × J → Z, (i, j) 7→ αij ,

The maximal subset U ⊆ I × J , on which the restriction

A|U : U → Z, (i, j) 7→ αij ,

6 PATRICK ERIK BRADLEY AND NORBERT PAUL

is a map, is called the domain of A, and denoted by δ(A). If δ(A) = I × J , then
we say that A is a total matrix. 2

If a partial matrix A :⊆ I × J → Z is not defined in (i, j) ∈ I × J , then we will
write αij = null or αij = ↑.

As for ordinary matrices, we say that a partial matrix

A :⊆ I × J → Z, (i, j) 7→ αij

is a partial m×n-matrix, if card(I) = m and card(J) = n. The set of partial integer
m × n-matrices will be denoted by

Z
m×n
⊆ ,

whereas Z
m×n stands for the set of all total m × n-matrices.

Also, we extend the matrix product in a natural way to a product of the partial
m × n-matrix A and a partial n × p-matrix

B :⊆ J × K → Z, (j, k) 7→ βij ,

by summing up only over indices on which both matrices are defined and saying
the sum over an empty set is undefined, hence

∑

i∈∅ ai := ↑.
More precisely, A · B = (γij), where

γij =
∑

` : (i,`)∈δ(A), (`,j)∈δ(B)

αi`β`j .(1)

This leads to the following rules for calculating with ↑:

↑ + a = a + ↑ = a for a ∈ Z ∪ {↑}

↑ · a = a · ↑ = ↑ for a ∈ Z ∪ {↑}

Note that these rules differ from the usual calculation rules with null-values in
relational databases. Usually these null-values are supposed to be a placeholder
for missing information. We clearly do not advocate a general replacement of these
rules by the rules presented above. In our case, however, ↑ is introduced to actually
store additional information and these rules are more adequate for this kind of
application.

Note also, that the domain of a matrix can be viewed as a relation and that
δ(A · B) = δ(A) ◦ δ(B) holds: The domain of the partial matrix product is the
relational product of the domains of the matrices involved.

Example 4.2 (Unity partial matrix). Let

1n :⊆ {1, . . . , n}×{1, . . . , n} → Z,

(i, j) 7→

{

1, i = j

↑, otherwise

be the minimal identity partial n × n-matrix or unity partial n × n-matrix. The
multiplication rule for partial matrices yield for A ∈ Z

m×n
⊆ :

A · 1n = 1m · A = A.(2)

Note that the unity rule (2) does not hold in general, if one replaces in 1A some ↑
off the diagonal by 0. Let namely I ∈ Z

m×m
⊆ be such a matrix with the extra zero

in the place (i, j), and A = (αrs) ∈ Z
m×n
⊆ be such that αik = ↑ for some k, and

αjk ∈ Z for j 6= i. Then the (i, k)-element of I · A equals 1 · ↑ + · · · + 0 · αjk 6= ↑.

USING THE RELATIONAL MODEL 7

Example 4.3 (Partial zero matrix). A partial zero m× n-matrix is any matrix in
Z

m×n
⊆ containing only 0 or ↑ entries. We will use the notation 0 for any partial zero

matrix of any size. The particular size is usually clear from the context. However,
we will only specify the domain of the partial zero matrix when explicitly needed.

We say that a partial n × n-matrix A is invertible, if there is a matrix B such
that A · B = B · A = 1n. This means that invertible partial matrices have lots of
undefined entries.

Lemma 4.4. A partial n×n-matrix is invertible if and only if it is defined precisely
in one entry per line and column, and those entries are all invertible elements of
Z, i.e. either 1 or −1.

Proof. A matrix A with precisely one entry per row and column clearly has an
inverse if and only if those entries are ±1.

Assume that A has a completely undefined i-th row. Then the entry at (i, i) in
A · B is not defined, hence A not invertible. By a similar argument for columns,
it follows that every invertible partial matrix has at least one defined entry per
column and row.

Assume that A has a row with two distinct entries αij , αik 6=↑. The determinant
of A is defined in the usual way, and there is an adjoint partial matrix A# such
that A · A# and A# · A each equal to det(A) times a unitary partial matrix I . In
the invertible case, clearly I = 1n must hold true. The entries of A# are, as in the
total case, of the form det(A′`k), where A′`k is the partial (n − 1) × (n − 1)-matrix
obtained by deleting the `-th row and the k-the column of A and shrinking to the
smaller size. Let now γi` be the (i, `)-entry of A ·A# with i 6= `. It holds true that

γi` =
∑

k

αik · det(A′`k) = αij det(A′`j) + other terms

By assumption, αij is defined, and so is the (i, k)-entry in A′`j : it equals αik . This

implies that all rows and columns of A′`j contain at least one defined entry. Hence,

det(A′`j) 6=↑. Consequently, A cannot be invertible. �

4.2. The category DChainComp. We define the category DChainComp whose
objects are the marked chain complexes generalised in the relational context. The
category of marked chain complexes will then be found to be equivalent to a full
subcategory of DChainComp.

Definition 4.5. A relational complex is a pair C = (B, D), where B is a finite
set partitioned into subsets B0, . . . , Bn and D is the graph of a partial matrix ∂ :⊆
B × B → Z satisfying the following conditions:

(1) ∂ is defined on x ∈ Bj × Bi only if j < i.
(2) If x ∈ Bj × Bi with j < i − 1, then ∂(x) is either 0 or ↑.
(3) ∂2 = 0.

∂ is called the relational boundary, and the restriction of ∂ to B ×Bi is called the
i-th relational boundary of C. The latter will be denoted by ∂i. 2

Note that in (iii), the term 0 denotes the partial zero matrix from Example 4.3.

Definition 4.6. Let C = (B, D) and C′ = (B′, D′) be relational complexes. A
morphism C → C′ of relational complexes is the graph of a partial matrix m :⊆
B′ × B → Z satisfying the conditions:

8 PATRICK ERIK BRADLEY AND NORBERT PAUL

(1) If i 6= j and x ∈ B′j × Bi, then m(x) ∈ {0, ↑}.
(2) m · ∂ = ∂′ · m.

The composition M ′ ◦ M of M with the morphism M ′ : C′ → C′′ is defined as the
graph of the partial matrix m′ ·m :⊆ B′′×B → Z. The relational complexes together
with their morphisms form the category DChainComp. 2

The axioms for a category are readily verified for DChainComp. Note that
the unity morphism 1C ∈ HomDChainComp(C, C) is the graph of the minimal unity
partial matrix from Example 4.2. In other words, 1C is the diagonal in B × B.

Remark 4.7. From the theory of chain complexes, one would expect morphisms of
relational complexes to satisfy the relations

mi−1 · δi = δ′i · mi,(3)

where mi :⊆ B′i×Bi, δi :⊆ Bi−1×Bi and δ′i :⊆ B′i−1 ×B′i are the restrictions of m,
∂ and ∂′, respectively. Namely, these are the translations into the relational setting
of the required commuting diagram

. . . // Ci

δi //

mi
��

Ci−1
//

mi−1

��

. . .

. . . // C ′i
δ′

i

// C ′i−1
// . . .

for morphisms of chain complexes. The relations (3) are indeed satisfied, as the
following proof reveals.

Proof. Denote αb′b an entry of the matrix on the left hand side of (3), and βb′b the
corresponding entry on the right hand side. The indices are given as b′ ∈ B′i−1 and
b ∈ Bi. Then it holds true that

αb′b =
∑

c∈Bi−1

mi−1(b
′, c)δi(c, b) =

∑

c∈Bi−1

m(b′, c)∂(c, b)

(∗)
=
∑

c∈B

m(b′, c)∂(c, b)
(∗∗)
=

∑

c′∈B′

∂′(b′, c′)m(c′, b)

(∗∗∗)
=

∑

c′∈B′

i

∂′(b′, c′)m(c′, b) =
∑

c′∈B′

i

δ′i(b
′, c′)mi(c

′, b)

= βb′b.

The equations (∗) and (∗ ∗ ∗) follow from property (i), and (∗∗) from property (ii)
of Definition 4.6. �

A relational complex is said to be total, if its relational boundary is a total matrix.
A morphism M : C → C′ of relational complexes is called total, if the underlying
partial matrix m :⊆ B′ × B → Z is total. Clearly, total relational complexes with
total morphisms form a category DChainComptot. However, that category is not
a subcategory of DChainComp, because the unit morphisms do not coincide: in
the total case, it is given by the total unity matrix, whereas in DChainComp, it
is given by the minimal partial unity matrix.

USING THE RELATIONAL MODEL 9

a
•

x // b
•

y //

z

XX
c
• a′

•
x′

// b
′

•
y′

// c
′

•
z′

WW

Figure 1

∆L

Vertex Edge α
a x −1
b x 1
b y −1
c y 1
b z 0

∆R

Vertex Edge α
a x −1
b x 1
b y −1
c y 1
c z 0

Table 1

4.3. Topological Information in DChainComp. In this subsection, we will
argue how the usage of partial matrices in the category DChainComp maintains
some topological information which gets lost when making marked chain complexes
from cw-complexes.

Example 4.8 (Isomorphic Complexes of Graphs). The two graphs from Figure 1
are not isomorphic but they have the same marked chain complex and therefore
the same total relational complex (Edge, Vertex, ∆) where Edge = {x, y, z} is the
set of lines, Vertex = {a, b, c} the set of vertices.

The boundary ∆ is in both cases the incidence matrix (after identifying a with
a′, x with x′ etc.):

∆ =





∆a,x ∆a,y ∆a,z

∆b,x ∆b,y ∆b,z

∆c,x ∆c,y ∆c,z



 =





−1 0 0
1 −1 0
0 1 0



 .

However, by removing zeros, we can define different partial matrices ∆L for the
left graph and ∆R for the right graph:

∆L =





−1 ↑ ↑
1 −1 0
↑ 1 ↑



 , ∆R =





−1 ↑ ↑
1 −1 ↑
↑ 1 0



 .

Corresponding relational database tables for ∆L and ∆R are given in Table 1. ∆L

is defined in (b, z), meaning that b ∈ {z}. The value 0 of ∆L in (b, z) means that z
is a loop. ∆R, however, is undefined in (b′, z′), meaning that in the right graph we

have b′ /∈ {z′}.
Using Lemma 4.4, it is easy to verify that the two relational complexes defined

in this way are not isomorphic.

Example 4.8 contains a special case of a relational encoding of cw-complexes.
Namely, let X be a combinatorial cw-complex with set of cells B. Then (assume
that b ∈ Bj and c ∈ Bi)

∂ :⊆ B × B → Z, (b, c) 7→











[c : b], b ∈ {c} ∧ j = i − 1

0, b ∈ {c} ∧ j < i − 1

↑, otherwise

10 PATRICK ERIK BRADLEY AND NORBERT PAUL

defines the boundary of a relational complex X(X).

Definition 4.9. C(X) is called the relational complex associated to X. 2

Example 4.10 (Loss of topological information). Our handling of zeros does not
recover all topological information, however. This is due to the fact that the bound-
ary of an n-cell c in a relational complex is given by an unordered list of (n−1)-cells.
However, different arrangements of the cells in the boundary of c can lead to non-
isomorphic cw-complexes. An example cw-complex X is given by [7, Example 2.38]
with non-trivial finite fundamental group

π1(X) = 〈a, b | a5b−3 = b3(ab)−2 = 1〉.

A slight rearrangement of 1-cells yields a cw-complex X ′ having the same relational
complex, but with fundamental group

π1(X
′) = 〈a, b | a5b−3 = a−2b = 1〉.

The latter is the trivial group, as can be easily calculated.

4.4. Implementation of relational complexes. This section briefly describes
what an example implementation of relational complexes could look like in Java as
described in [6]. Of course other programming languages will do, too. In particular
a translation into LISP using CLOS would be straightforward.

4.4.1. Partial Linear Algebra in Java. A free Z-module with basis B can be con-
sidered as the set Z

B of the mappings f : B → Z with addition f + g : B → Z, b 7→
f(b) + g(b) and scalar multiplication z · f : B → Z, b 7→ z · f(b). An A × B-matrix
is nothing else than an element of the free Z-module Z

A×B . The set of partial
mappings h :⊆ B → Z is then denoted by Z

B
⊆ and called the partial Z-module with

basis B.
Of course we approximate Z by the Java type Integer. We do not use the

primitive type int, because variables of type Integer can have a value null which
expresses ↑ in a natural way. Also these objects can be easily stored using the Java
Collections Framework. Then a partial Z-module with basis B of type Set<T>2 can
be declared by using an appropriate extension of the interface Map<T,Integer>. By
a simple helper class Pair<A,B>, matrices are declared by the following extensions
of Map<Pair<A,B>,Integer>:

IntMap<T> extends Map<T,Integer>

IntMatrix<A,B> extends IntMap<Pair<A,B>>.
The linear algebra operations addition, and the various FOO-products like scalar
multiplication, direct multiplication, inner product and matrix product can be de-
fined in the usual manner as members of these interfaces, such as

IntMap<T> IntMap.add(IntMap<T> other)

or by using a separate operators class like IntModule<T> which operates on such
elements by methods like

IntMap<T> IntModule.add(IntMap<T> a, IntMap<T> b)

sharing some similarity to CLOS’ generic functions. Anyhow, the operators must
consistently handle undefined entries: If some m != null is of type IntMap<T>,
hence m :⊆ B → Z, then the property m(b) = ↑ is equivalent to m.value(b)==null.
We do not permit explicit mappings to null, hence map.containsKey(b) must
then be false. In this case for any other IntMap<T> h the following must hold:

2We assume all necessary package imports like java.util.*;.

USING THE RELATIONAL MODEL 11

m.value(b) + h.value(b) == h.value(b)&& m.value(b) != 0

where a==b is shorthand for Java’s verbose equality

a==null ? b==null : a.equals(b)

for reference types and a!=b is its negation. This addition, however, would then
throw a NullPointerException. Hence a utility class Integers has to provide
methods like add, minus and times which operate on Integer references and im-
plement the operations according to the calculation rules in Z ∪ {↑} as presented
above. These methods must always be used instead of the standard operators.
Note that the above plus sign is a shorthand for the method add. It is mainly these
rules and the additional null, why we use the Java type Integer instead of the
primitive type int.

These classes and interfaces now provide an abstract framework upon which
relational complexes can be defined. Note that IntMap and IntMatrix are ab-
stract datatypes which may also be implemented by relational database access
using JDBC.

4.4.2. Relational Complexes in Java. A relational complex in Java is simply an
interface Complex<T>, with at least the methods

Set<T> getCells()

and

IntMatrix<T,T> getBoundary().

The boundary returned must yield a partial zero matrix if multiplied to itself,
hence the following must not fail if bd=getBoundary(someComplex):

for(Integer i : bd.mul(bd).values()){
if(i.intValue()!=0)

throw new Exception("not a complex");

}

Note that explicit mappings to null are not allowed, hence a NullPointer-

Exception at i.intValue() cannot occur.
Other useful methods for a complex are getCells(int dim) to return the set of

cells of some dimension dim as a set and, conversely, a method dimension(T cell)

returning the dimension of a cell.
As such complexes are meant as a data model for computer aided engineering,

the modifiers are very important methods. First of all not all complexes may be
editable, indicated by a method isEditable(). The elementary optional modifier
methods are then

addCell(T cell, Map<T,Integer> boundary)

and

removeCell(T cell)).

which permit the modification of editable complexes and throw an Unsupported-

OperationException (hence are optional) otherwise. The method addCell throws
an IllegalArgumentException if the boundary of the specified boundary is not a
partial zero map and removeCell, on the other hand, throws an IllegalState-

Exception if the specified cell is in the boundary of some other cell. We call these
methods the elementary Euler-Poincaré operators. They maintain the fundamental
complex property, thus prevent the construction of anything which is not a complex
and always permit the iterative construction of a complex.

12 PATRICK ERIK BRADLEY AND NORBERT PAUL

Having indicated how relational complexes can be implemented, we will return
to theory in the following sections. Note that cmpl.getBoundary().keySet() for
a complex cmpl returns a Set<Pair<T,T>>, in other words, a binary relation on
the cells of cmpl. The topological meaning of this relation will become evident in
what follows.

5. Categories of topological spaces

As we are interested not only in modeling spatial information, but also desire to
take care of relations between spaces, we adopt the point of view of categories and
functors. Hence, these “relations” will be modeled by morphisms in a category.

5.1. Relational databases as topological spaces. In this section, we introduce
a category of a special kind of relational database schemes and a category of topo-
logical spaces and show that there is an equivalence of categories between them.
This merely simply reproduces results of [3] in categorial terms with a slight gen-
eralization: Whereas Alexandrov assumes a transitive and reflexive relation on a
set, here any relation on a set is accepted, because its transitive and reflexive clo-
sure can always be computed. As we want to store the relation which generates a
topology into a relational database, we do not want to store redundant pairs (a, c)
which can be computed from already stored pairs (a, b) and (b, c).

Definition 5.1 (DTop). Let DTop be the following category: The objects of DTop

are pairs (X, R), where X and R are sets such that R is a binary relation on X,
i.e. R ⊆ X2. A morphism

f : (X, R) → (Y, S)

is a map f : X → Y between the underlying sets such that

(f × f)(R) ⊆ S∗,

where f × f : X × X → Y × Y is the map

(u, v) 7→ (f(u), f(v)),

and S∗ is the reflexive and transitive closure of S. We call the objects of DTop

topological datatypes, and the morphisms are called continuous database maps.
We then call a family {(Xi, Ri)}i∈I of topological datatypes a topological database.
2

Remark 5.2. A topological datatype (X, R) can be viewed in a natural way as
a topological database {(X, R)}. The way in which an object (X, R) of DTop is
to be seen as an actual database is to have a table for X and a table for R which
encodes R as a relation on X .

Remark 5.3. A topological datatype (X, R) can be considered as a simple graph.
However, a morphism of simple graphs f : (X, R) → (Y, S) fulfills the stronger
condition

(f × f)(R) ⊆ S ⊆ S∗.

Definition 5.4 (Alex). Let Alex be the following category: The objects of Alex

are the topological spaces (X, TX) having the property that the intersection of an
arbitrary set U ⊆ TX of open subsets of X is open, i.e.

⋂

U∈U

U ∈ TX .(4)

USING THE RELATIONAL MODEL 13

The morphisms of Alex are the continuous maps. An object of Alex is called an
Alexandrov space. 2

Alexandrov calls the topological spaces satisfying property (4) discrete spaces
[3].

Example 5.5 (Finite topological spaces). Any finite topological space is an Alexan-
drov space, as U can only contain finitely many open sets, and the intersection of
finitely many open sets is always open.

The next aim of this section is to prove

Theorem 5.6 (Attributed to Alexandrov). There is an equivalence of categories

F : DTop → Alex.

The proof of Theorem 5.6 is performed in several steps after some preparation.
First, consider the map

StR∗ : P(X) → P(X), A 7→ {x ∈ X | ∃ a ∈ A : aR∗x},

where P(X) denotes the power set of X .

Definition 5.7 (Star neighbourhood). Let (X, R) be an object of DTop and A
a subset of X. The set StR∗(A) ⊆ X is called the star neighbourhood of A. If
A = {x} ⊆ X, then we will write StR∗(x) instead of StR∗({x}). 2

Proposition 5.8. Let (X, R) be a topological datatype. Then for any A ⊆ X hold
true:

A ⊆ StR∗(A)(5)

StR∗(StR∗(A)) = StR∗(A).(6)

Proof. (5) is clear, as the diagonal R0 is a subset of R∗.

(6) The inclusion ⊇ follows from (5).

For ⊆, let x ∈ StR∗(StR∗(A)). Then there exists a y ∈ StR∗(A) such that xR∗y.
For this y ∈ StR∗(A) there is now an element z ∈ A such that yR∗z. Because R∗

is transitive, it follows that xR∗z, thus x ∈ StR∗(A). �

We now define the functor F .

On objects. For an object (X, R) let F (X, R) be the pair (X, im StR∗), where
im StR∗ is the image of the map StR∗ considered above. This yields a well-defined
map between objects:

Lemma 5.9. F (X, R) is an Alexandrov space.

Proof. We check that F (X, R) is a topological Alexandrov space by going through
the axioms for im StR∗ .

(1) It is easily verified that X = StR∗(X) and ∅ = StR∗(∅).
(2) Let A ⊆ P(X). The following identities hold true:

StR∗

(

⋃

A∈A

StR∗(A)

)

=
⋃

a∈A

StR∗(A)(7)

StR∗

(

⋂

A∈A

StR∗(A)

)

=
⋂

a∈A

StR∗(A)(8)

14 PATRICK ERIK BRADLEY AND NORBERT PAUL

The first equality is readily checked. For the second, the inclusion ⊇ follows im-
mediately from the expression (5). For the inclusion ⊆, let x be an element of
the left-hand side. Then x R∗ y for some y ∈ StR∗(A) for all A ∈ A. But then
x ∈ StR∗(StR∗(A)) = StR∗(A), where the latter equality is given by equation (6).
This shows that F (X, R) is a topological space having the property of being an
Alexandrov space. �

On morphisms. Let now f : (X, R) → (Y, S) be a continuous database map in
DTop. We define F (f) to be the underlying map of sets X → Y .

Lemma 5.10. The induced map

F (f) : (X, im StR∗) → (Y, im StS∗)

between Alexandrov spaces is continuous.

Note that the map F (f) : X → Y is nothing but the map f : X → Y in the
definition of a morphism in DTop. Therefore we will denote the map F (f) between
the topological spaces of the Lemma simply by f .

Proof. Let V ∈ im StS∗ , i.e. V = StS∗(B) for some subset B of Y . We must show
that f−1(V) is open in (X, im StR∗). We claim that f−1(V) = StR∗(f−1(V)), in
which case f−1(V) is indeed open.

By Proposition 5.8.(5) we have f−1(V) ⊆ StR∗(f−1(V)). In order to show the
other inclusion, let x ∈ StR∗(f−1(V)). Then there is a u ∈ f−1(V) such that xR∗u.
This implies

f(x) T f(u),

where T := (f × f)(R∗). Let T ′ := ((f × f)(R))
∗
. Then

T ⊆ T ′ ⊆ S∗.(9)

The right inclusion holds because S∗ is reflexive and transitive and as, by as-
sumption, (f × f)(R) ⊆ S∗. For the left inclusion let x R∗ y be such that
f(x) T f(y). Then there is a sequence x = x1, . . . , xn = y such that xi R xi+1

for all i = 1, . . . , n − 1. So the sequence f(x) = f(x0), . . . , f(xn) = f(y) has the
property that

f(xi) (f × f)(R) f(xi+1)

for all i = 1, . . . , n − 1. This means that f(x) T ′ f(y).

Thus, by (9), it follows that f(x) S∗ f(u). But then

f(x) ∈ StS∗(V) = StS∗(B) = V,

where the latter equality is due to Proposition 5.8.(6). Thus, x ∈ f−1(V) which
proves the claim. �

Proof of Theorem 5.6. From Lemmata 5.9 and 5.10 we see that F is a well defined
functor

DTop → Alex.

Claim 1. F is fully faithful.

USING THE RELATIONAL MODEL 15

Let X = (X, R) and Y = (Y, S). Then

HomDTop(X,Y) → HomAlex(FX, FY), f 7→ F (f),(10)

is the map between the sets of morphisms induced by the functor F . We must show
that it is bijective.

We do this by giving an inverse map. The map

G : HomAlex(FX, FY) → HomDTop(X,Y), f 7→ f.

takes any continuous function

f : (X, im StR∗) → (Y, im StS∗)

to itself, considered as a map

f : (X, R) → (Y, S).

This is indeed a morphism in DTop, i.e. (f × f)(R) ⊆ S∗: Namely, let

(u, v) ∈ (f × f)(R).

This means that there are elements a, b ∈ X with a R b and u = f(a), v = f(b).
Now, the fact that

u ∈ U := StS∗(u)

implies that a ∈ f−1(U). But, b ∈ StR∗(a), because a R b. Thus, also b ∈
f−1(U), since StR∗(a) ⊆ f−1(U). The latter holds true, because f−1(U) is open
by continuity of f . Therefore v ∈ U , in other words: u S∗ v. This proves that f is
a morphism in DTop, and G is therefore well defined.

It is clear that F (G(f)) = f resp. G(F (f)) = f for f ∈ HomAlex(FX, FY),
resp. f ∈ HomDTop(X,Y). This implies that the map (10) is bijective.

Claim 2. F is essentially surjective.

For this, let (X, T) be an Alexandrov space. We must show that (X, T) is home-
omorphic to a space of the form (Y, im StR∗) for some relation R on Y .

Let Y := X , and define the relation R as:

x R y : ⇐⇒ y ∈ Ux,

where Ux is the intersection of all open subsets of (X, T) containing x.

Note that R is reflexive and transitive, which implies R = R∗.

We have Ux ∈ T, because (X, T) is an Alexandrov space. Also,

Ux = StR(x),

so the sets U := {Ux | x ∈ X} and S := {StR(x) | x ∈ X} generate the same
topology on X . Because the topology T is generated by U, this implies T = im StR.
So, (X, T) is not only homeomorphic, but even equal to (X, im StR∗).

That F is an equivalence of categories now follows from Claim 1 and Claim 2. �

The following definition is a straightforward generalisation of the special case of
partial orderings in [3].

Definition 5.11 (Topology generated by relation). Let R be a relation on a set
X. We say that the topology T = im StR∗ on X is generated by R, and call T the
Alexandrov topology of (X, R). 2

16 PATRICK ERIK BRADLEY AND NORBERT PAUL

Remark 5.12. Note that it is quite tempting to disbelieve the statement of Theo-
rem 5.6, because any two relations R and S on a set X satisfying R∗ = S∗ generate
the same topology on X . However, in this case, the two objects (X, R) and (X, S)
are isomorphic in DTop, as will be seen in Theorem 5.13.

A more detailed description of the isomorphism classes of objects in DTop and
Alex is given in the following theorem.

Theorem 5.13. Let {(X, R), (Y, S)} be a topological database. Then:

(1) (X, im StR∗) and (Y, im StS∗) are homeomorphic, if and only if there is a
bijection φ : R∗ → S∗, (x, y) 7→ (φ1(x, y), φ2(x, y)) which takes stars to
stars, i.e.

y ∈ StR∗(x) =⇒ φ2(x, y) ∈ StS∗(φ1(x, y)).

(2) Let X = Y . Then R and S generate the same topology, if and only if the
bijection from (i) satisfies φ1(x, y) = x.

(3) For X = Y holds true: R∗ = S∗ if and only if StR∗ = StS∗ .

Proof. Let for any relation T on a set M

UT (M) := {StT∗(x) | x ∈ M}.

It is an easy fact that UT generates the topology StT∗ .

(1) Let φ : R∗ → S∗ be a bijection taking stars to stars. Then for any x ∈ X

Φx := {φ2(x, y) | y ∈ StR∗(x)} = StS∗(z),

where z := φ1(x, y) for any y ∈ StR∗(x) (note that this is independent of the
choice of y ∈ StR∗(x)) by assumption). Indeed, we clearly have Φx ⊆ StS∗(x) by
assumption, and if w ∈ StS∗(z), then there is a (unique) u ∈ X such that x R∗ u,
i.e. w ∈ Φx. Then the map

X → Y, x 7→ z (as above)

induces a bijection

Ψ: UR(X) → US(Y),

hence a homeomorphism

(X, im StR∗) → (Y, im StS∗).

Let, for the converse implication, f : (X, im StR∗) → (Y, im StS∗) be a homeo-
morphism. Then f induces a map

Ψ: UR(X) → US(Y).

Namely, there is the map

Ψ: UR(X) → im StS∗ , U 7→ f(U).

The image of Ψ is US(Y): f(StR∗(x)) is an open set containing f(x), hence

f(StR∗(x)) ⊇ StS∗(f(x)).

And f−1(StS∗(f(x)) is an open set containing x, hence

f−1(StS∗(f(x))) ⊇ StR∗(x).

USING THE RELATIONAL MODEL 17

• //•

��• •oo •

OO• •

��• •

>>•

~~ •��

•

Figure 2

This implies

StR∗(x) ⊆ f−1(StS∗(f(x)))

⊆ f−1(f(StR∗(x))) = StR∗(x),

hence StR∗(x) = f−1(StS∗(f(x))), and we obtain the induced map Ψ: UR(X) →
US(Y).

Now, the map
R∗ → S∗, (x, y) 7→ (f(x), f(y))

is clearly a bijection satisfying

y ∈ StR∗(x) ⇒ f(y) ∈ StS∗(f(x)),

i.e. takes stars to stars.

(2) By what we have seen in the proof of (1), we have

UR(X) = US(X) ⇐⇒ ∀x ∈ X φ1(x, y) = x.

In this case, the topologies on X generated by R and S coincide.

(3) By the above, it holds true that the induced map Ψ: UR(X) → US(Y) is the
identity, if and only if for all x ∈ X the stars StR∗(x) and StS∗(x) coincide, i.e. if
and only if StR∗ = StS∗ . �

The following example shows that not every bijection R∗ → S∗ yields homeo-
morphic topological spaces.

Example 5.14 (Bijection between relations). Consider the two graphs of Figure
2 which are transitive. There is obviously a bijection between the reflexive and
transitive closures of the corresponding relations, as the numbers of oriented edges
coincide. However, the two corresponding topological spaces are not homeomorphic,
as the numbers of connected components differ.

Another useful characterisation of DTop is the following

Theorem 5.15. The category DTop is equivalent to the category Grts of reflexive
and transitive simple graphs.

The morphisms of the category Grts are meant to be graph morphisms. Recall
that for a simple graph G = (V, E, d : E → V × V) the set of edges E consists of
pairs of vertices: E ⊆ V × V .

Proof. Let Γ: DTop → Grts be the functor which maps (X, R) to the graph Γ(X, R)
whose set of vertices is X and set of edges is R∗ (for pairs (x, y) ∈ R∗ let x be the
origin and y the terminal vertex); and which maps topological database maps

f : (X, R) → (Y, S)

to the natural graph morphism

Γ(f) : Γ(X, R) → Γ(Y, S)

18 PATRICK ERIK BRADLEY AND NORBERT PAUL

obtained by the condition

(f × f)(R) ⊆ S∗.

We check that Γ is an equivalence. First, the induced map

Γ: Hom((X, R), (Y, S)) → Hom(Γ(X, R), Γ(Y, S))

is bijective: because by a graph morphism

φ : Γ(X, R) → Γ(Y, S)

edges are taken to edges, in particular edges in R are mapped into S∗. Therefore,
restricting to R induces a morphism in DTop

f : (X, R) → (Y, S)

such that Γ(f) = φ. This determines a map

∆: Hom(Γ(X, R), Γ(Y, S)) → Hom((X, R), (Y, S))

which is readily seen to be the inverse map to Γ on morphisms. This means that Γ
is fully faithful.

Let now G = (V, E, d) be a reflexive, transitive, simple graph. Then (V, E) is
obviously an object in DTop such that Γ(V, E) = G. So, Γ is essentially surjective.

�

Remark 5.16. The fact that DTop is equivalent to a category of topological
spaces means firstly that it is not only possible to create databases of the types of
topological spaces considered without any loss of topological information, but also
continuous maps f : X → Y can be stored in a lossless way, simply by taking the
graph of f .

5.2. Relational complexes in DTop. Given a relational complex C, one obtains
a topological datatype simply by taking the basis B and the relation R∂ ⊆ B × B
defined as

(a, b) ∈ R∂ ⇐⇒ ∂(a, b) 6=↑,(11)

where ∂ is the relational boundary of C. We sometimes will write a ≤ b instead of
(a, b) ∈ R∂ , because the relation defines a partial ordering on B.

Proposition 5.17. The Alexandrov topology on the underlying set X of a com-
binatorial cw-complex X induced by the relation R∂ from (11) coincides with the
combinatorial topology on X.

Proof. Let (X,∼) be a cw-complex for which X = X/ ∼, and x ∈ Xn an n-cell of
X. By definition of the weak topology on X , any open neighbourhood of x in X for
the combinatorial topology consists of cells from Xm with m > n. Any minimal
open neighbourhood Ux of x consists of cells y whose boundary contain x. The
latter means that ∂(x, y) 6=↑. In other words, Ux ⊆ StR∗

∂
(x).

Now, the set StR∗

∂
(x) consists precisely of the cells of X at whose boundary lies x.

This is clearly a minimal open neighbourhood of x in the combinatorial topology.
Hence, StR∗

∂
(x) is the smallest open neighbourhood of x, and the combinatorial

topology is an Alexandrov topology, and moreover coincides with the topology
generated by R∂ . �

USING THE RELATIONAL MODEL 19

If M : C → C′ is a morphism of relational complexes, then the partial matrix m :⊆
B × B′ → Z does not, in general, allow in a natural way to define a corresponding
map B → B′. However, for any morphism of finite combinatorial cw-complexes
f : X → X

′, there is the underlying map σf : X → X′.

Proposition 5.18. The map σf is continuous for the Alexandrov topologies on
(X, R) and (X′, R′). This defines a functor

F : CombCW → DTop.

Proof. This is a direct consequence of Proposition 5.17 and the fact that σf is
continuous for the combinatorial topologies. The functoriality is clear. �

As to the functorial relation between cw-complexes and DChainComp, note
that a continuous map which is not cellular does not induce a map between the
corresponding marked chain complexes. E.g. let the following map be the identity
map on the unit interval:

• // • // • → • // •

Here, the boundary of any of the two edges on the left does not map to the boundary
of its image, as would be required for any induced chain map.

If, on the other hand, a map φ : X → X ′ of cw-complexes is cellular, it induces
a well-defined chain map φ∗ : C(X) → C(X ′). The matrix entries of φ∗ are “deter-
mined by topology”, and the relation ∂ ′φ∗ = φ∗∂ follows naturally. However, this
is not the case for combinatorial complexes. Consider, for example, the inversion
map of an edge:

• // • → • •oo

In CW, the change in orientation is encoded in the map between the points on
the edges. The corresponding encoding in DChainComp is straightforward. But
in CombCW, the edge object on the left maps to the edge object on the right,
disregarding any informtion on orientation. Consequently, it is always possible
to obtain a trivial encoding in DChainComp via the partial zero matrix. This
morphism coincides on the sets of cells with the corresponding map in DTop.

If a relation R ⊆ N ×M is the graph of a function f : N → M , then we call the
transposed relation {(m, n) ∈ M × N | m = f(m)} the inverted graph of f .

Proposition 5.19. Let f : X → X
′ be a cellular map between combinatorial cw-

complexes. Then there is a morphism Mf : C(X) → C(X′) of relational complexes
whose underlying partial matrix mf :⊆ B′ × B is defined precisely on the inverted
graph of f and whose entry in x = (f(b), b) ∈ B′j × Bi satisfies

mf (x) 6= 0 ⇔ i = j.

Proof. The combinatorial cw-complexes X
′ and X are quotients of cw-complexes X

and X ′. Because the quotient maps are open, the map f lifts to a cellular map
between cw-complexes such that the diagram commutes:

X //

��

X ′

��
X

f //
X
′

The morphism of relational complexes C(X) → C(X ′) has the desired property. As
C(X) = C(X) and C(X ′) = C(X′), the assertion follows. �

20 PATRICK ERIK BRADLEY AND NORBERT PAUL

Remark 5.20. From a computational point of view, the proof of Proposition 5.19
is not very satisfactory, because the entries of the partial matrix are obtained via
the map between cw-complexes. Hence, the map between the relational complexes
depends heavily on the choice of a map between cw-complexes.

However, in order to have a control of whether or not a partial matrix mf : B′×
B → Z defines a morphism of relational chain complexes C(X) → C(X′), one can
proceed in a more constructive manner.

To this end, we may assume that the domain of definition of mf is the inverted

graph of f . Let for b ∈ B µf
b := mf (f(b), b).

The condition ∂′ · Mf = Mf · ∂ translates for (b′, b) ∈ B′j × Bi to

(∂′ · mf)(b′, b) = (mf · ∂)(b′, b)(12)

The left side of (12) equals
∑

`∈B′

∂′(b′, `) · mf (`, b) = ∂′(b′, f(b)) · mf (f(b), b)

=











[f(b) : b′] · µf
b , j = i − 1 ∧ b′ ≤ f(b)

0, j < i − 1 ∧ b′ ≤ f(b)

↑, otherwise.

The right hand side of (12) is clearly

R(b′, b) :=
∑

`∈Bj∩f−1(b′)

mf (b′, `) · ∂(`, b)

which is defined if and only if j ≤ i − 1 and b′ ≤ f(b). In the case j < i − 1, it
holds true that R(b′, b) = 0, whereas for j = i − 1 we have

R(b′, b) =
∑

`∈Bi−1:f(`)=b′

[b : `] · µf
` ,

if b′ ≤ f(b). Hence, (12) translates for (b′, b) ∈ B′i−1 × Bi with b′ ≤ f(b) into the
condition:

[f(b) : b′] · µf
b =

∑

`∈Bi−1:f(`)=b′

[b : `] · µf
`(13)

which is a linear equation with integer coefficients in the unknowns µf
` and µf

b . It

clearly has non-trivial solutions. Note that only those µf
` occur in (13) for which

(f(`), `) ∈ B′k ×Bk. It is now easy to see that for fixed (b′, b) ∈ B′0 ×B1 (i.e. i = 1)
there are infinitely many solutions. These are inserted into the right hand sides of

the equations for i = 2 in order then to obtain recursively (i → i + 1) all µf
b with

b ∈ B.

Lemma 5.21. Assume that on the right hand side in (13) all µ` 6= 0. If the right
hand side vanishes, then so does [f(b) : b′].

Proof. This follows from the fact that f is induced by a cellular map of cw-

complexes φ such that the induced chain map φ∗ has the property φ∗(`) = µf
` ·φ(`),

and the like for b ∈ Bi. In particular, this means that µf
b 6= 0. Hence, [f(b) : b′]

vanishes, if the right hand side of (13) does. �

USING THE RELATIONAL MODEL 21

Remark 5.22. Lemma 5.21 implies a freedom of choice for those µf
b for which the

right hand side of (13) vanishes, provided that (f(b), b) ∈ B ′i × Bi.

In order to obtain a functor, it is necessary to have Mg◦f = Mg ·Mf for morphisms
f : X → X

′ and g : X
′ → X

′′. This translates into the condition

µg◦f
b = µg

f(b) · µ
f
b(14)

for b ∈ B.
The subcategory of CombCW consisting of combinatorial complexes with cel-

lular maps will be denoted by CombCWc.

Theorem 5.23. There is a factorisation of the functor CW → DChainComp

via CombCWc:

CW //

H ''OOOOOOOOOOO CombCWc

∃G

��
DChainComp

where H is the straightforward functor to relational chain complexes.

Proof. It suffices to prove condition (14) under the rule that µf
b = 1 whenever there

is a freedom of choice as stated in Remark 5.22. In particular, b ∈ B0 implies

µf
b = 1, and (14) holds true in this case. We proceed by induction: assume that

(14) holds true for i ∈ N, and let b ∈ Bi+1, b′′ ∈ B′′i , b′′ ≤ g(f(b)). Then

[g(f(b)) : b′′] · µg◦f
b =

∑

k∈Bi:g(f(k))=b′′

[b : k] · µg◦f
k

i.h.
=

∑

k∈Bi:g(f(k))=b′′

[b : k] · µf (k)g · µf
k

=
∑

`∈B′

i:g(`)=b′′

∑

k∈Bi:f(k)=`

[b : k] · µf
k · µg

`

=
∑

`∈B′

i:g(`)=b′′

[f(b) : `] · µf
b · µg

`

= [g(f(b)) : b′′] · µg

f(b) · µ
f
b

where the second equality holds true by the induction hypothesis. If [g(f(b)) : b′′] 6=

0, then (14) follows. Assume [g(f(b)) : b′′] = 0. Then µg◦f
b = µg

f(b) = 1 by the two

corresponding instances of freedom of choice. But also for ` ∈ g−1(b′′),

[f(b) : `] · µf
b =

∑

k∈Bi:f(k)=`

[b : k] · µf
k

=
∑

k∈Bi:g(f(k))=b′′

[b : k] · µf
k

= [g(f(b)) : b′′] · µg◦f
b = 0.

Hence, again by freedom of choice implies µf
b = 1. �

Remark 5.24. There is no natural way of defining a functor DChainComp →
DTop, because the partial matrices representing morphisms in DChainComp do
not naturally yield maps between topological datatypes. Namely, given a morphisms

22 PATRICK ERIK BRADLEY AND NORBERT PAUL

M : C → C′ of relational complexes, then the corresponding partial matrix m : ⊆
B × B′ → Z yields a relation Rm ⊆ B × B, where

(b, b′) ∈ Rm ⇔ m(b, b′) 6=↑ .

If this relation is the graph of a function B → B′, then it is possible to obtain a
continuous database map.

Corollary 5.25. The functor F : CombCW → DTop is essentially surjective
onto the subcategory of DTop whose objects consist of simple, transitive, directed
acyclic graphs. Its restriction to CombCWc factorises as follows:

CombCWc F //

G ((QQQQQQQQQQQQQ
DTop

DChainComp

H

77o
o

o
o

o
o

where G is as in Theorem 5.23, and H is a functor from the subcategory of DChainComp

whose objects are the relational complexes and the morphisms are represented by
partial matrices m such that Rm, as defined in Remark 5.24, is the graph of a
function.

Proof. F is a functor by Proposition 5.18. It is clear that the objects in the image
of F are simple, transitive and directed acyclic graphs. Now, let f : B → B ′ be
a morphism in DTop between the topological spaces X and X′ associated to the
combinatorial cw-complexes X and X

′. We need to show that there is a morphism
φ : X → X

′ such that F (φ) = f . The map φ := f does the job, because the
morphisms in CombCW are precisely the continuous maps.

It is clear that G takes morphisms f : X → X
′ in CombCWc to morphisms of

relational complexes whose corresponding partial matrices m are such that Rm is
the graph of a function. In this case, the function rm : X → X′ is a morphism

rm : (X, R∂) → (X′, R∂′)

in DTop. This follows from the fact, that rm coincides with the map f , and the
latter is continuous for the corresponding Alexandrov topologies by Proposition
5.17. This constructs the functor H ◦ G.

In order to show that H ◦ G = F , observe first that by Proposition 5.17, the
topological spaces associated by H ◦G and F to a given combinatorial cw-complex
coincide, whence the equality on objects. As to equality on morphisms, we have
already observed that rm = f , using the notation above. �

5.3. Complexity of DTop. The definition of DTop is straightforward from the
observation, that every Alexandrov space can be characterized by a relation. It
simply stores such a relation, which gives a storage complexity of O(n2), where n is
the cardinality of the underlying point set. On the first glance, one might consider
this very inefficient for practical purposes and suppose that more subtle techniques
exist to save storage space. No such technique exists, however, to improve this
asymptotical behaviour. It has been shown that O(n2) is the best possible storage
complexity upper bound for every data structure for storing arbitrary topologies
[5]. In practical cases, however, the topologies are less complex, so the problem
of quadratic complexity will not arise there. Topologies derived from architectural

USING THE RELATIONAL MODEL 23

spaces, for example, mostly have linear storage complexity O(n) in DTop and can
therefore be efficiently stored in DTop as well as in DChainComp [5].

6. Topological constructions

The motivation for this section is to define a query language for topological
databases. This can be achieved by transforming the standard relational database
queries into constructions of topological spaces out of given ones.

6.1. The lattice of topologies. Topologies on a given set have the handy prop-
erty of being partially ordered by inclusion. Therefore topologies on a set can be
compared and one considered best for some purpose can be chosen.

Definition 6.1 (Ordering of Topologies). Let S and T be topologies on a set X.
Then S is said to be coarser than T, if S ⊆ T, and T is also called finer than S.

If S is coarser (finer) than T, then the topological space (X, S) is also said to be
coarser (finer) than (X, T). 2

Note that T is finer than S if and only if the identical map on the underlying set
X

idX : X → X, x 7→ x,

defines a continuous map idX : (X, T) → (X, S).
In the case of Alexandrov topologies, there is a criterion for deciding whether

one topology is finer than another. For simplicity of notation, we define

TR := im StR∗

to be the topology generated by the relation R.

Lemma 6.2. Let R and S be relations on X. Then TR is finer than TS, if and
only if R ⊆ S∗. Furthermore, TR equals TS, if and only if R∗ = S∗.

Proof. Note first that (idX × idX)(R) = R. Thus, we have the equivalence of the
following statements

(1) TR is finer than TS .
(2) idX : (X, TR) → (X, TS) is continuous.
(3) (idX × idX)(R) = R ⊆ S∗.

Here the equivalence of (ii) and (iii) follows from Theorem 5.6.
This proves the first part of the lemma. The second part is an immediate con-

sequence of the first part. �

The trivial topology {∅, X} is the coarsest topology that exists for X and the set
of all subsets of X , called discrete topology, is its finest toplogy. It is well known
that for every set T of topologies for a set X there is an infimum inf T =

⋂

T∈T

T,

and a supremum sup T, the topology generated by
⋃

T∈T

T.

Lemma 6.3. Let T be a family of Alexandrov topologies on a set X. Then inf T is
an Alexandrov topology. If T is finite, then also sup T is Alexandrov.

Proof. The proof is straightforward. �

Lemma 6.3 states that there must exist relations generating the infimum and
supremum topologies without making those relations explicit. The next theorem
provides a construction of these relations.

24 PATRICK ERIK BRADLEY AND NORBERT PAUL

Theorem 6.4 (with A. Höschele). Let {Ri}i∈I be a family of relations on a set

X. Then
⋃

i∈I

Ri generates inf {TRi
| i ∈ I}. If I is finite, then

⋂

i∈I

R+
i generates

sup {TRi
| i ∈ I}, where R+ denotes the transitive closure of a relation R on X.

Proof. Let S :=
⋃

i∈I

Ri. By Lemma 6.3, Tinf := inf {TRi
| i ∈ I} is Alexandrov,

hence generated by a relation Rinf . As for all i ∈ I we have Tinf ⊆ TRi
, it follows by

Lemma 6.2 that Ri ⊆ R∗inf . Hence, again Lemma 6.2 implies that Tinf = TRinf
⊆ TS.

On the other hand, all Ri are contained in S. Lemma 6.2 then implies that all
TRi

are finer than TS . Hence, TS ⊆ Tinf . This proves the first assertion.

Assume now I finite. Let R :=
⋃

i∈I

R∗i , and Tsup := sup {TRi
| i ∈ I}. We want

to prove that Tsup = TR. First, we have for all i ∈ I that R ⊆ Ri which yields
TR ⊇ TRi

for all i ∈ I , by Lemma 6.2, hence TR ⊇ Tsup.
For the converse inclusion: Tsup ⊇ TRi

for all i ∈ I yields Rsup ⊆ R∗i for
all i ∈ I , where Rsup is a relation generating Tsup (which exists by Lemma 6.3).
Hence, Rsup ⊆ R, and Tsup ⊇ TR. The second assertion now follows, because

R =

(

⋂

i∈I

R+
i

)∗

.

�

If T is not finite, then Tsup need not be Alexandrov, as the following example
shows:

Example 6.5 (Non-Alexandrov supremum). Let X = [0, 1] be the unit interval
and Tn the topology generated by the set

{

{0},

(

0,
1

n

)

,

{

1

n

}

, . . . ,

{

n − 1

n

}

,

(

n − 1

n
, 1

)

, {1}

}

where (x, y) denotes the open interval {r ∈ R | x < r < y}. Then sup {Tn | n ∈ N}
can be shown to be the Euclidian topology on X , which is not Alexandrov.

6.2. Some examples of topological constructions.

6.2.1. Subspace topology. Let A ⊆ X be a subset of a topological space X . Recall
that A carries the subspace topology which is simply obtained by intersecting A
with all open sets of X .

Lemma 6.6. Let (X, R) be a topological datatype and A ⊆ X. Then A2 ∩ R+

generates the subspace topology for A.

Proof. Let iA : A → X be the natural inclusion map. As A2∩R+ = (iA×iA)−1(R+),
the assertion is a special case of Theorem 6.9. �

The following example illustrates that in general, the computation of the tran-
sitive closure R+ is necessary to generate the subspace topology.

Example 6.7 (by A. Höschele). Let (X, R) be the topological database whose
Alexandrov space depicted is in Figure 3. Then the subspace topology on A = {a, b}
does not contain the open set {b} which is, however, contained in the discrete
topology on A, the one generated by A2 ∩ R = ∅.

USING THE RELATIONAL MODEL 25

a
•

����
�

��;
;;

•

��:
::

•

����
�

•
b

Figure 3

It will later be demonstrated that the transitive closure is necessary to compute
the subspace topology, which is also the so-called initial topology of the inclusion
mapping from A to X .

6.2.2. Initial and final topologies. As topological constructions are obtained by con-
structing initial or final topologies, we show how to construct these, first.

Definition 6.8 (Initial and final topology). Let fi : Xi → Y (i ∈ I) and gj : X →
Yj (j ∈ J) be maps between sets, where the (Xi, TXi

) and (Yj , TYj
) are topological

spaces. Then the finest topology Tf on Y such that all fi are continuous is called
the final topology of the family {fi}i∈I on Y , and the coarsest topology Tg on X
such that all gj are continuous is called the initial topology of the family {gj}j∈J

on X. 2

Theorem 6.9. Let fi : Xi → Y (i ∈ I) and gj : X → Yj (j ∈ J) be maps where the
{(Xi, Ri)}i∈I and {(Yj , Sj)}j∈J

are topological databases. Then

Sf :=
⋃

i∈I

(fi × fi)(Ri)

generates the final topology of {fi}i∈I on Y . If J is finite, then

Rg :=
⋂

j∈J

(gj × gj)
−1(S∗j)

generates the initial topology of {gj}j∈J
on X. If, additionally, all gj are injective,

then the initial topology of {gj}j∈J
on X is generated by

Rg,+ :=
⋂

j∈J

(gj × gj)
−1(S+

j).

If the family {gj}j∈J
consists of a single map g into the topological datatype (Y, S),

and if that map is surjective, then the initial topology on X is generated by

R = (g × g)−1(S).

Proof. As it is seen that the final topology of the family {fi} is the infimum of the
final topology of the final topologies of the single maps fi, and the initial topology
of the family {gj} is the supremum of the initial topologies of the single maps gj ,
the proof is reduced to the case of single maps f : X → Y (with relation R on X)
and g : X → Y (with relation S on Y).

26 PATRICK ERIK BRADLEY AND NORBERT PAUL

In that case, we have

Rf = (f × f)(R)

Sg = (g × g)−1(S∗)

Sg,+ = (g × g)−1(S+).

Final topology. The map f : (X, R) → (Y, Rf) is clearly continuous. Let now
RY be any relation on Y such that f : (X, R) → (Y, RY) is continuous. Then, by
definition, Rf ⊆ R∗Y , hence TRf

is finer than TRY
. This means that TRf

is the
finest topology such that f is continuous, hence final.

Initial topology. The map (X, Sg) → (Y, S) is continuous, as (g×g)(Sg) ⊆ S∗.
Let now SX be any relation on X such that f : (X, SX) → (Y, S) is continuous.
Then (g× g)(SX) ⊆ S∗ implies that SX ⊆ (g× g)−1(S∗) = Sg, hence TSg

is coarser
than TSX

. Thus, TSg
is the coarsest topology on X such that g is continuous.

g injective. We must show S∗g,+ = S∗g . The inclusion ⊆ is obvious. For the
other inclusion, first observe that Sg is reflexive and transitive. Let (a, b) ∈ Sg. We
may assume that a 6= b, as obviously (a, a) ∈ Sg,+. Now, (g(a), g(b)) ∈ S∗, and the
injectivity of g implies g(a) 6= g(b), i.e. (g(a), g(b)) ∈ S+. Hence, (a, b) ∈ Sg,+. As
one checks that Sg = S∗g , the inclusion ⊇ is proven.

g surjective. We know that R′ := (g × g)−1(S∗) is reflexive, transitive and
generates the initial topology. Clearly, R∗ ⊆ R′. We now show that R′ ⊆ R∗. Let
(a, b) ∈ R′. Then (g(a), g(b)) ∈ Sn for some n ∈ N. This means that there is a
sequence

y0 = g(a), y1, . . . , yn = g(b)

such that (yi, yi+1) ∈ S for all i = 0, . . . , n − 1. As g is surjective, this means that
there exist a0 = a, a1, . . . , an = b such that g(ai) = yi and (ai, ai+1) ∈ R for all
i = 0, . . . , n − 1. Thus, (a, b) ∈ R∗. �

The case of a surjective map g in Theorem 6.9 does not generalise to a family of
more than one surjective maps {gj}j∈J

.

Example 6.10 (Initial map requiring transitive closure). Let X = Y = {a, b, c, d},
and S1 = {(a, b), (b, d)}, S2 = {(a, c), (c, d)} relations on Y . The initial topology
on X for the family consisting of the two identical maps

g1 = g2 : X → X, x 7→ x,

is generated by the relation S+
1 ∩ S+

2 = {(a, d)}, whereas S1 ∩ S2 = ∅ generates a
different topology on X .

6.2.3. Overwiew on relational algebra. The query language we have in mind is the
relational algebra. According to [9, p.63] only the semantics of the relational oper-
ators matter — their notation, however, is arbitrary. We first introduce the notion
of a ‘relational database’ and other associated notions.

Definition 6.11 (Relational Schema). Let D be a fixed set of sets, which we call the
domains of a relational database system. Each set D ∈ D is called an elementary
data type. We then call a mapping R : A → D from a (usually finite) set A of
attribute names to the domains a relational schema for D. We will often denote a
relational schema R : {a1, . . . , an} → D by R[a1 : D1, . . . , an : Dn], where R(ai) =
Di holds for all i = 1, . . . , n. 2

USING THE RELATIONAL MODEL 27

Note that this definition differs somewhat from standard literature, where the
set A of attribute symbols is called ‘relational schema’. But then an additional
mapping domA : A → D is assumed which maps each attribute symbol a to its
domain domA(a) [8]. In this case, however, the complete specification of a relational
schema would be the pair (A, domA). But as the attribute set A is already given
by the mapping, we see no need to explicitely mention it again and, hence, consider
the mapping alone a relational schema.

Such relational schema is now used to define the data.

Definition 6.12 (Tuple, Relation, Relational Database). Let R : A → D be a
relational schema. Then a mapping t : A →

⋃

D is called a tuple to R, if t(a) ∈
R(a) holds for each attribute symbol a ∈ A. If G is a set of tuples to R, then the
pair (R, G) is called a relation to R. R is often called the header and G is called the
body or the graph of the relation (and is in general assumed finite). A relational
database is simply a family {(Ri, Gi) | i ∈ I} of such relations over a finite index
set I which consists of the table names. 2

To store, modify and retrieve information in relational databases a query lan-
guage is needed. We will use relational algebra which provides us with the basic
query operators.

Definition 6.13 (Relational algebra). We will call a query language L for rela-
tional databases a relational algebra if L it consists at least of the operators

(1) constant domain values, tuples and relations,
(2) theta-selection σΘ(R) of a relation R,
(3) projection πA(R) and renaming β(ai←bi)(R) of a relation R,
(4) cartesian product R × S or, alternatively, natural join R 1 S of relations

R and S and
(5) union R∪S, intersection R∩S and set difference R \S of relations R and

S, if both are union compatible, hence have the same relational schema.

L is called a relational algebra with transitive closure if for a relational schema for
binary relations R[a : D, b :D] there is a query expression C(R) which computes the
transitive closure R+ for every relation R to R. 2

Note that the transitive closure expression only depends on the relational schema
and not on the occurence of the given relation. It is well known, that with the
operators alone, listed in the definition, it is not possible to formulate such a query
for the transitive closure [8].

Except for the trivial constant queries, we will now show the topological versions
of the above listed operations and, additionally, of the quotient relation R/A—the
set of the fibres of the projection πA(R), called framing a relation by Codd and
realized in SQL by group by-clauses.

6.2.4. Selection in topological databases. Our first example for a transformation of a
relational database query into a topological construction will be the select-operator
from relational algebra.

Definition 6.14 (topological select operator). Let (X, R) be a topological datatype
and Θ a predicate expression to the relational schema of X. Then the query
σΘ(X) := {t ∈ X | t satisfies Θ} is called the theta-select of X with Θ. Hence
we call

σ Θ(X, R) := (σΘ(X), R+ ∩ δL(σΘ(X)) × δR(σΘ(X)))

28 PATRICK ERIK BRADLEY AND NORBERT PAUL

the topological theta-select of (X, R) with Θ. 2

Note that this is a special case of Lemma 6.6. As in practical databases, the
relation R will only contain pairs of key values for key attributes in X , the σΘ(X)
of the cartesian product expressions must be made union compatible with R by
adequate renaming and projection queries. These queries are denoted by δL for the
factor on the left hand side and δR on the right hand side of the cartesian product.

6.2.5. Final topological database queries. The corollaries in the remainder of this
section all are consequences of Theorem 6.9.

Corollary 6.15. Let (X, R) be a topological datatype and ∼ an equivalence relation
on X. Then (π × π)(R) generates the quotient topology on X/ ∼, where π : X →
X/ ∼ is the canonical projection.

Proof. This is a direct consequence of Theorem 6.9, as the quotient topology is the
final topology on X/ ∼ for the canonical projection π. �

Remark 6.16. If X is a relation in a relational schema R and A is a subset of
the attribute set X of R, then one can define an equivalence relation ∼A on the set
of all tuples of X by saying that tuples s and t are equivalent, if their projections
onto A coincide. The resulting relation X/ ∼A is then a set of aggregated tuples
of a corresponding relational schema R/ ∼A. In this way, the group-by-operator
in SQL gets a topological meaning as a quotient map of topological datatypes.

The quotient topology is strongly related to the topology of the projection. We
first recall that the projection πA(X) of a relation X with attributes X is known
as πA(X) := {πA(t) | t ∈ X}. Every record t in X is projected onto the attributes
in A. So we have a mapping πA : X → πA(X) from each record of the given
relation X to a record of the resulting relation πA(X), which therefore gets the
final topology.

Definition 6.17 (Topological projection). Let (X, R) be a topological datatype
with attributes X and A a subset of X. We assume without loss of generality that R
consists of pairs of records from X. Then, as (πA × πA)(R) generates the topology
on πA(X), we call

π
A

(X, R) := (πA(X), (πA × πA)(R))

the topological projection of (X, R) onto A. 2

Note that the actual relational schema of R is not relevant for Definition 6.17
and the topological projection is unique up to homeomeorphism. If R does not
consist of pairs of records from X , which is very likely to be the case in normalized
relations, then we replace R by the expression π1,2((X × X) 1Θ R), where Θ is
satisfied by every tuple (xa, xb, (a, b)) such that (a, b) ∈ R and a references xa as a
foreign key and b is such reference to xb. The projection π1,2 turns (xa, xb, (a, b))
into (xa, xb).

To complete the list of standard unary relational operators we will briefly intro-
duce renaming.

Definition 6.18 (topological renaming). Let (X, R) be a topological datatype, f a
renaminig of attributes in X and βf the according relational renaming operator for
X. Then

β
f
(X, R) := (βf (X), (βf × βf)(R))

USING THE RELATIONAL MODEL 29

is called the renaming of a topological datatype. 2

The effect of renaming is obvious and only mentioned for completeness.

6.2.6. Sums in topological databases. Disjoint unions are known in SQL by the
union all statements. These, however, are not proper disjoint unions but rather
a lazy enumeration of the union of a set, avoiding the costly effort of removing
duplicates. Codd calls such relations with duplicates corrupted [9]. In topology,
however, there is a strict notion of disjoint unions, which we will now adopt to the
relational model.

Corollary 6.19. Let (X, R) and (Y, S) be union compatible topological datatypes
with corresponding Alexandrov spaces X and Y. Then the topology of X + Y is
generated by the relation R

∐

S on {0} × X ∪ {1} × Y , defined as

(a, b) ∈ R
∐

S

⇐⇒ (a, b) = ((0, x), (0, y)) and (x, y) ∈ R,

or (a, b) = ((1, x), (1, y)) and (x, y) ∈ S.

Proof. This follows from Theorem 6.9, as the topology on X+Y is the final topology
of the natural inclusions X → X + Y and Y → X + Y. �

In relational queries such disjoint unions must be made explicit by specifying
an additional attribute ref to store the 0 and 1 values. We suggest a notation
X+refY which says that X and Y are union compatible relations where an attribute
named ref does not occur. Then we define two constant relations {〈0 : ref〉} and
{〈1 : ref〉} and set

X +ref Y := {〈0 : ref〉} × X ∪ {〈1 : ref〉} × Y.

or, in SQL:

select 0 as ref, *

from X

union all

select 1 as ref, *

from Y;

6.2.7. Glueing topological databases. Another important construction is the glueing
of topological spaces.

Corollary 6.20. Let (X, R) and (Y, S) be union compatible topological datatypes
with corresponding Alexandrov spaces X and Y, and A ⊆ X a topological subspace
of X. Let f : A → Y be a glueing map, hence (f × f)(R+|A) ⊆ S∗, with R+|A :=
R+ ∩ (A×A). Then then the topology of the space X

∐

f Y, obtained by glueing Y

to X with glueing map f , is generated by

(π × π)(R
∐

S),

where π : X + Y → X
∐

f Y is the canonical projection induced by the glueing with
f .

Proof. This follows immediately from Corollaries 6.19 and 6.15. �

30 PATRICK ERIK BRADLEY AND NORBERT PAUL

An SQL-expression corresponding to the glueing of topological spaces is straight-
forward, but leads to rather lengthy expressions which we will not particularise here.
It is the query expression for the equivalence relation generated by f on X + Y

which is somewhat verbose.

6.2.8. Topological product database. Let {(X, R), (Y, S)} be a topological database,
and let X resp. Y be the corresponding Alexandrov spaces. Define the following
relation R ⊗ S on X × Y :

((a, b), (a′, b′)) ∈ R ⊗ S ⇐⇒ ((a, a′), (b, b′)) ∈ R × S.

Then, if we denote the diagonal relation ∆X on X by R0 (i.e. a R0 b, if and only if
(a, b) ∈ ∆X , if and only if a = b), we obtain:

Corollary 6.21. The product topology on X ×Y is generated by

(R ⊗ S0) ∪ (R0 ⊗ S).

Proof. We will show that the topology generated by T := (R ⊗ S0) ∪ (R0 ⊗ S) is
equivalent to the initial topology

Tπ := (πX × πX)−1(R∗) ∩ (πY × πY)−1(S∗)

for the projections πX : X ×Y → X and πY : X×Y → Y.

1. T ∗ ⊆ T ∗π . Let (a, b)T (a′, b′). We may assume that (a, a′) ∈ R and b = b′. As
(a, a′) = (πX × πX)((a, b), (a′, b′)) and (b, b) ∈ S∗, we have (a, b)Tπ(a′, b′).

2. T ∗ ⊇ T ∗π . Let (a, b)Tπ(a′, b′). Then (a, a′) = (πX × πX)((a, b), (a′, b′)) ∈ R∗,
and also (b, b′) ∈ S∗. Thus, (a, b)R∗⊗S0(a′, b) and (a, b)R0⊗S∗(a, b′). By induction,
it can be shown that

R∗ ⊗ S0 = (R ⊗ S0)∗ and R0 ⊗ S∗ = (R0 ⊗ S)∗,

whence (a, b)(R ⊗ S0 ∪ R0 ⊗ S)∗(a′, b′), i.e. (a, b)T ∗(a′, b′). �

Together with the topological theta select it is then possible to compute topo-
logical inner joins. Outer joins, however, cannot be defined this way as the involved
mappings are partial projections and partial mappings do not yield a unique initial
topology. A further discussion of topological outer joins and a possible workaround
can be found in [5].

Example 6.22 (Topological product in SQL). Let X be a relation with relational
schema {id, . . .} and Y another relation with {nr, . . .}. Let R be a relation whith
relational schema {ax : X.id, bx : X.id} then (X, R) forms a topological database. A
relation S having a relational schema

{

ay : Y.nr, by : Y.nr
}

also gives a topological
database (Y, S). The cartesian product X × Y is obviously given by the SQL-
expression

create view XtimesY as

select * from X,Y;

Then, with the SQL-expression

create view RprodS as

select ax, bx, nr as ay, nr as by

from R,Y

union

select id as ax, id as bx, ay, by

from X,S;

USING THE RELATIONAL MODEL 31

the pair (XtimesY, RprodS) forms a topological database of the topological prod-
uct, hence

(XtimesY, RprodS) ∼= (X, R) × (Y, S).

Remark 6.23. Note that according to Corollary 6.21 the product topology, despite
it being an initial topology, can be computed without using the transitive closure
operation.

6.2.9. Union and intersection. The union and the intersection of two sets both
have characteristic inclusion mappings which define topologies on them. The union
A ∪ B has the inclusions iA : A ↪→ A ∪ B and iB : B ↪→ A ∪ B and hence will get a
final topology, whereas the intersection A ∩ B has inclusions jA : A ∩ B ↪→ A and
jB : A ∩ B ↪→ B and therefore gets an initial topology. The set-difference is just
another version of a subspace.

Definition 6.24 (Union, intersection, set-difference). Let (X, R) and (Y, S) be
union compatible topological datatypes. Then we call

(X, R) ∪ (Y, S) := (X ∪ Y, R ∪ S)

the topological union and

(X, R) ∩ (Y, S) := (X ∩ Y, R+ ∩ S+)

the topological intersection and

(X, R) \ (Y, S) := (X \ Y, (X \ Y)2 ∩ R+)

the topological difference of (X, R) with (Y, S). 2

Remark 6.25. We need to verify that the above concepts are well defined.
Union. The topological union is easily recognized as the final relation of the

inclusions X ↪→ X ∪ Y and Y ↪→ X ∪ Y .
Intersection. Let be A = X ∩ Y . According to Lemma 6.6 A2 ∩ R+ is initial

for the inclusion A ↪→ X and A2 ∩S+ is initial for A ↪→ Y . According to Theorem
6.4 the infimum of these relations is the left hand side of the equation

(A2 ∩ R+)+ ∩ (A2 ∩ S+)+ = R+ ∩ S+

and it is an easy exercise to verify that this, indeed, is an equation.
Difference. This is the subspace according to Lemma 6.6.

Remark 6.26. Note, that the topological union is a glueing if one of the inclusion
mappings (X, R)|X∩Y ↪→ (Y, S) or (Y, S)|X∩Y ↪→ (X, R) is continuous.

6.3. On the necessity of computing the transitive closure. As seen in the
previous subsection, the use of the transitive closure of a relation is suggested in
some cases. On the other hand, the generating relation of the product topology
of two spaces involves only the two initial relations and the diagonal relations and
no transitive closure operator (cf. Corollary 6.21). In this subsection, we will show
that computing the transitive closure becomes indispensable in many important
cases.

Theorem 6.27. Let (X, R) be a topological datatype. If a relational algebra lan-
guage L can decide continuity in Alex, then it can decide for any (a, b) ∈ X2,
whether or not (a, b) lies in the transitive closure R+ of the relation R.

32 PATRICK ERIK BRADLEY AND NORBERT PAUL

Proof. Let (Y, S) be the topological datatype consisting of the set Y := {a, b}
and the relation S := {(a, b)} on Y . Denote by X and Y the Alexandrov spaces
corresponding to (X, R) and (Y, S). If the language L can decide, if the inclusion
map Y → X is continuous, then L decides whether or not S ⊆ R∗, i.e. whether
(a, b) ∈ R∗ or not. Then in L the following query can be formulated:

(a = b and (a, b) ∈ R) or (a 6= b and (a, b) ∈ R∗),

which is equivalent to (a, b) ∈ R+. �

Theorem 6.28. If a relational algebra L can compute any initial topology in Alex,
then it is a relational algebra with transitive closure.

This means L can compute the transitive closure R+ of any relation R on any
set X .

Proof. Let R be an arbitrary binary relation in a domain D, hence the schema if
R is [a : D, b :D]. Then with

X := βid←aπa(R) ∪ βid←bπb(R)

the pair (X, R) is a topological datatype. As the subspace topology is a particular
instance of initial topology, we can make the following construction: Consider the
relation S := ∆X2 ⊗ R on X2 × X which we shall, by abuse of notation, consider
a relation on X3. Let T be any relation which generates the subspace topology of

A := {(a, b, c) ∈ X3 | a = c or b = c} ⊆ X3.

The projection π3 : A → X onto the third factor induces the relation P on X , given
by

P := (π3 × π3)(T)

Claim. R+ \ R0 ⊆ P ⊆ R∗.

The claim implies that if the language L computes T , then it computes also
R+ = (P \ R0) ∪ R. We shall now prove the claim.

Left inclusion. Let (a, b) ∈ R+ \ R0, i.e. (a, b) ∈ R+ and a 6= b. This means
that the elements (a, b, a), (a, b, b) ∈ A satisfy (a, b, a)S(a, b, b). As T generates the
subspace topology on A, this implies that (a, b, a)T +(a, b, b). Now, let n ∈ N be
minimal such that

(a, b, a)T n(a, b, b).(15)

As a 6= b, this n must be positive. If T is viewed as a graph with vertices in A, then
(15) can be viewed as a path without backtracking from p0 = (x0, y0, z0) = (a, b, a)
along vertices pi = (xi, yi, zi) ∈ A to pn = (xn, yn, zn) = (a, b, b). As, however, all
vertices pi are taken from A, we must have

xi = a, yi = b zi = a or b

for all i = 0, . . . , n. Thus, n = 1. But (a, b, a)T (a, b, b) implies (a, b) ∈ P .

Right inclusion. Assume now (a, b) ∈ P . If a = b, then, obviously, (a, b) ∈ R∗.
So, assume further a 6= b. By assumption, there exist x1, x2, y1, y2 ∈ X such that

(x1, x2, a)T (y1, y2, b),

which implies

(x1, x2, a)Sn(y1, y2, b)(16)

USING THE RELATIONAL MODEL 33

for some n > 0, as A2 ∩ S+ and T both generate the subspace topology. But (16)
means that (a, b) ∈ R∗. �

This expressive power to compute the transitive closure, however, is only needed
for the general case. Alternatively, the dimension of the relational datatypes can
be given a fixed upper limit d, in which case the transitive closure R+ is equal to
d
⋃

i=1

Ri, which can be computed by every relational algebra.

7. Conclusions

From the statement that architecture is a finite partitioning of the Euclidian
real space which has a refinement into a cw-complex immediately, we show how
to construct a topology for architectural elements. The statement holds in our
opinion not only for architecture, but in fact for every engineering discipline dealing
with spatial artefacts. Also, we feel that any Computer Aided Engineering (CAE)
software should be able to store and retrieve such topological information.

We propose a data model for this task after introducing the relevant concepts
from topology, employing the natural language for describing the various aspects of
topological information: categories and functors. With that proposed data model,
we show that every topological information of finite sets can be stored. Therefore
the data model is effective, a result which is interesting in the light of [5], where
it has been found to be efficient, too, because no other data structure with this
property can have a better asymptotical storage complexity. The complexity even
becomes linear in practical CAE applications, because in these cases only “docile”
topologies with linear complexity are likely to come up.

We show then, how to express topological constructions with relational database
queries and, on the other hand, transform the basic query operators themselves
into topological constructions. This becomes possible under the premise that the
underlying query language can express relational algebra with transitive closure.
Alternatively, the dimension of the modeled space can be given a fixed upper bound,
thus avoiding the transitive closure for these special cases. In practical CAE for
threedimensional artefacts this should hardly be a limitation.

To put it short, the proposed data model is a topological extension of the rela-
tional database model.

Acknowledgements

The authors thank Anita Höschele for some contribution. The anonymous re-
viewers are thanked for helpful remarks towards improving the exposition of the
article. Prof. Dr. Niklaus Kohler is thanked for giving the authors the opportunity
to work in this field.

Funding

This work is funded by the Deutsche Forschungsgemeinschaft (DFG) in the re-
search project KO 1488/8-1, 8-2 “Architektonische Komplexe”.

34 PATRICK ERIK BRADLEY AND NORBERT PAUL

References

[1] Mäntylä, M. (1988) An introduction to solid modeling. Computer Science Press, Rockville,
MD.

[2] Paul, N. and Bradley, P.E. (2003) Topological houses. In: Proceedings 16th International
Conference on the Applications of Computer Science and Mathematics in Architecture and
Civil Engineering (ikm).

[3] Alexandrov, P. (1937) Diskrete Räume. Matematiećeskij Sbornik, 44, 501–519.
[4] Paul, N. and Bradley, P.E. (2005) Relationale Datenbanken für die Topologie architektonischer

Räume. In: Forum Bauinformatik 2005. Junge Wissenschaftler forschen.
[5] Paul, N. (2008) Topologische Datenbanken für Architektonische Räume. PhD thesis, Univer-

sität Karlsruhe, Germany.
[6] Paul, N. (2007) A Complex-Based Building Information System. In: Proceedings of the 24th

Conference on Education in Computer Aided Architectural Design in Europe. Frankfurt am
Main, 26-29 September 2007.

[7] Hatcher, A. (2002) Algebraic topology. Cambridge University Press, Cambridge, MA. Also
available at http://www.math.cornell.edu/∼hatcher/

[8] Maier, D. (1983) The theory of relational databases. Pitman, London.
[9] Codd, E.F. (1990) The relational model for database management. Addison-Wesley, Reading,

MA.

