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Abstract. A conceptual framework for cluster analysis from the viewpoint of p-adic
geometry is introduced by describing the space of all dendrograms for n datapoints
and relating it to the moduli space of p-adic Riemannian spheres with punctures
using a method recently applied by Murtagh (2004b). This method embeds a den-
drogram as a subtree into the Bruhat-Tits tree associated to the p-adic numbers,
and goes back to Cornelissen et al. (2001) in p-adic geometry. After explaining the
definitions, the concept of classifiers is discussed in the context of moduli spaces,
and upper bounds for the number of hidden vertices in dendrograms are given.

1 Introduction

Dendrograms are ultrametric spaces, and ultrametricity is a pervasive prop-
erty of observational data, and by Murtagh (2004a) this offers computational
advantages and a well understood basis for developping data processing tools
originating in p-adic arithmetic. The aim of this article is to show that the
foundations can be laid much deeper by taking into account a natural object
in p-adic geometry, namely the Bruhat-Tits tree. This locally finite, regular
tree naturally contains the dendrograms as subtrees which are uniquely deter-
mined by assigning p-adic numbers to data. Hence, the classification task is
conceptionally reduced to finding a suitable p-adic data encoding. Dragovich
and Dragovich (2006) find a 5-adic encoding of DNA-sequences, and Bradley
(2007) shows that strings have natural p-adic encodings.

The geometric approach makes it possible to treat time-dependent data on
an equal footing as data that relate only to one instant of time by providing
the concept of family of dendrograms. Probability distributions on families are
then seen as a convenient way of describing classifiers.

Our illustrative toy data set for this article is given as follows:

Example 1.1 Consider the data set D = {0, 1, 3, 4, 12, 20, 32, 64} given by
n = 8 natural numbers. We want to hierarchically classify it with respect to
the 2-adic norm |·|2 as our distance function, as defined in Section 2.
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2 A brief introduction to p-adic geometry

Euclidean geometry is modelled on the field R of real numbers which are often
represented as decimals, i.e. expanded in powers of the number 10−1:

x =

∞
∑

ν=m

aν10−ν , aν ∈ {0, . . . , 9}, m ∈ Z.

In this way, R completes the field Q of rational numbers with respect to the

absolute norm |x| =

{

x, x ≥ 0

−x, x < 0
. On the other hand, the p-adic norm on Q

with

|x|p =

{

p−νp(x), x 6= 0

0, x = 0

is defined for x = a1

a2

by the difference νp(x) = νp(a1) − νp(a2) ∈ Z in the
multiplicities with which numerator and denominator of x are divisible by the
prime number p: ai = pνp(ai)ui, and ui not divisible by p, i = 1, 2.

The p-adic norm satisfies the ultrametric triangle inequality

|x + y|p ≤ max {|x|p, |y|p}.

Completing Q with respect to the p-adic norm yields the field Qp of p-adic
numbers which is well known to consist of the power series

x =

∞
∑

ν=m

aνpν , aν ∈ {0, . . . , p − 1}, m ∈ Z. (1)

Note, that the p-adic expansion is in increasing powers of p, whereas in the
decimal expansion, it is the powers of 10−1 which increase arbitrarily. An
introduction to p-adic numbers is e.g. Gouvêa (2003).

Example 2.1 For our toy data set D, we have |0|2 = 0, |1|2 = |3|2 = 1,
|4|2 = |12|2 = |20|2 = 2−2, |32|2 = 2−5, |64|2 = 2−6, i.e. |·|2 is maximally 1
on D. Other examples: |3/2|3 = |6/4|3 = 3−1, |20|5 = 5−1, |p−1|p = |p|−1

p = p.

Consider the unit disk D = {x ∈ Qp | |x|p ≤ 1} = B1(0). It consists of
the so-called p-adic integers, and is often denoted as Zp when emphasiz-
ing its ring structure, i.e. closedness under addition, subtraction and mul-
tiplication. A p-adic number x lies in an arbitrary closed disk Bp−r (a) =
{x ∈ Qp | |x − a|p ≤ p−r}, where r ∈ Z, if and only if x − a is divisible by
pr. This condition is equivalent to x and a having the first r terms in com-
mon in their p-adic expansions (1). The possible radii are all integer powers
of p, so the disjoint disks Bp−1(0), Bp−1(1), . . . , Bp−1(p − 1) are the maximal
proper subdisks of D, as they correspond to truncating the power series (1)
after the constant term. There is a unique minimal disk in which D is con-
tained properly, namely Bp(0) = {x ∈ Qp | |x|p ≤ p}. These observations hold
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true for arbitrary p-adic disks, i.e. any disk Bp−r(x), x ∈ Qp, is partitioned
into precisely p maximal subdisks and lies properly in a unique minimal disk.
Therefore, if we define a graph TQp

whose vertices are the p-adic disks, and
edges are given by minimal inclusion, then every vertex of TQp

has precisely
p + 1 outgoing edges. In other words, TQp

is a p + 1-regular tree, and p is the
size of the residue field Fp = Zp/pZp.

Definition 2.2 The tree TQp
is called the Bruhat-Tits tree for Qp.

Remark 2.3 Definition 2.2 is not the usual way to define TQp
. The problem

with this ad-hoc definition is that it does not allow for any action of the pro-
jective linear group PGL2(Qp). A definition invariant under projective linear
transformations can be found e.g. in Herrlich (1980) or Bradley (2006).

An important observation is that any infinite descending chain

B1 ⊇ B2 ⊇ . . . (2)

of strictly decreasing p-adic disks converges to a unique p-adic number {x} =
⋂

n

Bn. A chain (2) defines a halfline in the Bruhat-Tits tree TQp
. Halflines

differing only by finitely many vertices are said to be equivalent, and the
equivalence classes under this equivalence relation are called ends. Hence the
observation means that the p-adic numbers correspond to ends of TQp

. There
is a unique end B1 ⊆ B2 ⊆ . . . coming from any strictly increasing sequence
of disks. This end corresponds to the point at infinity in the p-adic projective
line P1(Qp) = Qp ∪ {∞}, whence the well known fact:

Lemma 2.4 The ends of TQp
are in one-to-one correspondance with the Qp-

rational points of the p-adic projective line P1, i.e. with the elements of P1(Qp).

From the viewpoint of geometry, it is important to distinguish between the
p-adic projective line P1 as a p-adic manifold and its set P1(Qp) of Qp-rational
points, in the same way as one distinguishes between the affine real line A1 as
a real manifold and its rational points A1(Q) = Q, for example. One reason
for distinguishing between a space and its points is:

Lemma 2.5 Endowed with the metric topology from |·|p, the topological space
Qp is totally disconnected.

The usual approaches towards defining more useful topologies on p-adic
spaces are by introducing more points. Such an approach is the Berkovich
topology, which we will very briefly describe. More details can be found in
Berkovich (1990).

The idea is to allow disks whose radii are arbitrary positive real numbers,
not merely powers of p as before. Any strictly descending chain of such disks
gives a point in the sense of Berkovich. For the p-adic line P1 this amounts to:
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Theorem 2.6 (Berkovich) P1 is non-empty, compact, hausdorff and arc-
wise connected. Every point of P1 \{∞} corresponds to a descending sequence
B1 ⊇ B2 ⊇ . . . of p-adic disks such that B =

⋂

Bn is one of the following:

1. a point x in Qp,
2. a closed p-adic disk with radius r ∈ |Qp|p,
3. a closed p-adic disk with radius r /∈ |Qp|p,
4. empty.

Points of types 2. to 4. are called generic, points of type 1. classical. We
remark that Berkovich’s definition of points is technically somewhat different
and allows to define more general p-adic spaces. Finally, the Bruhat-Tits tree
TQp

is recovered inside P1:

Theorem 2.7 (Berkovich) TQp
is a retract of P1 \ P1(Qp), i.e. there is a

map P1 \P1(Qp) → TQp
whose restriction to TQp

is the identity map on TQp
.

3 p-adic dendrograms

ν2 0 1 3 4 12 20 32 64

0 ∞ 0 0 2 2 2 5 6
1 0 ∞ 1 0 0 0 0 0
3 0 1 ∞ 0 0 0 0 0
4 2 0 0 ∞ 3 4 2 2
12 2 0 0 3 ∞ 3 2 2
20 2 0 0 4 3 ∞ 2 1
32 5 0 0 2 2 2 ∞ 5
64 6 0 0 2 2 1 5 ∞

Fig. 1. 2-adic valuations for D.
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Fig. 2. 2-adic dendrogram for D ∪ {∞}.

Example 3.1 The 2-adic distances within D are encoded in Figure 1, where
dist(i, j) = 2−ν2(i,j), if ν2(i, j) is the corresponding entry in Figure 1, using
2−∞ = 0. Figure 2 is the dendrogram for D using |·|2: the distance between
disjoint clusters equals the distances between any of their representatives.

Let X ⊆ P1(Qp) be a finite set. By Lemma 2.4, a point of X can be
considered as an end in TQp

.

Definition 3.2 The smallest subtree D(X) of TQp
whose ends are given by

X is called the p-adic dendrogram for X .
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Cornelissen et al. (2001) use p-adic dendrograms for studying p-adic sym-
metries, cf. also Cornelissen and Kato (2005). We will ignore vertices in D(X)
from which precisely two edges emanate. Hence, for example, D({0, 1,∞})
consists of a unique vertex v(0, 1,∞) and three ends. The dendrogram for a
set X ⊆ N ∪ {∞} containing {0, 1,∞} is a rooted tree with root v(0, 1,∞).

Example 3.3 The 2-adic dendrogram in Figure 2 is nothing but D(X) for
X = D ∪ {∞} and is in fact inspired by the first dendrogram of Murtagh
(2004b). The path from the top cluster to xi yields its binary representa-
tion [·]2 which easily translates into the 2-adic expansion: 0 = [0000000]2,
64 = [1000000]2 = 26, 32 = [0100000]2 = 25, 4 = [0000100]2 = 22,
20 = [0010100]2 = 22 + 24, 12 = [0001100]2 = 22 + 23, 1 = [0000001]2,
3 = [0000011]2 = 1 + 21.

Any encoding of some data set M which assigns to each x ∈ M a p-adic
representation of an integer including 0 and 1, yields a p-adic dendrogram
D(M ∪ {∞}) whose root is v(0, 1,∞), and any dendrogram for real data
can be embedded in a non-unique way into TQp

as a p-adic dendrogram in
such a way that v(0, 1,∞) represents the top cluster, if p is large enough. In
particular, any binary dendrogram is a 2-adic dendrogram. However, a little
algebra helps to find sufficiently large 2-adic Bruhat-Tits trees TK which allow
embeddings of arbitrary dendrograms into TK . In fact, by K we mean a finite
extension field of Qp. The p-adic norm |·|p extends uniquely to a norm |·|K on
K, for which it is a complete field, called a p-adic number field. The integers
of K are again the unit disk OK = {x ∈ K | |x|K ≤ 1}, and the role of the
prime p is played by a so-called uniformiser π ∈ OK . It has the property that
OK/πOK is a finite field with q = pf elements and contains Fp. Hence, if
some dendrogram has a vertex with maximally n ≥ 2 children, then we need
K large enough such that 2f ≥ n. This is possible by the results of number
theory. Restricting to the prime characteristic 2 has not only the advantage
of avoiding the need to switch the prime number p in the case of more than p
children vertices, but also the arithmetic in 2-adic number fields is known to
be computationally simpler, especially as in our case the so-called unramified
extensions, i.e. where dimQ2

K = f , are sufficient.

Example 3.4 According to Bradley (2007), strings over a finite alphabet can
be encoded in an unramified extension of Qp, and hence be classified p-adically.

4 The space of dendrograms

From now on, we will formulate everything for the case K = Qp, bearing
in mind that all results hold true for general p-adic number fields K. Let
S = {x1, . . . , xn} ⊆ P1(Qp) consist of n distinct classical points of P1 such that
x1 = 0, x2 = 1, x3 = ∞. Similarly as in Theorem 2.7, the p-adic dendrogram
D(S) is a retract of the marked projective line X = P1 \ S. We call D(S)
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the skeleton of X . The space of all projective lines with n such markings is
denoted by Mn, and the space of corresponding p-adic dendrograms by Dn−1.
Mn is a p-adic space of dimension n− 3, its skeleton Dn−1 is a cw-complex of
real polyhedra whose cells of maximal dimension n − 3 consist of the binary
dendrograms. Neighbouring cells are passed through by contracting bounded
edges as the n − 3 “free” markings “move” about P1 without colliding. For
example, M3 is just a point corresponding to P1 \ {0, 1,∞}. M4 has one free
marking λ which can be any Qp-rational point from P1 \ {0, 1,∞}. Hence,

∞
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Fig. 3. Dendrograms representing the different regions of D3.

the skeleton D3 is itself a binary dendrogram with precisely one vertex v and
three unbounded edges A, B, C (cf. Figure 3). For n ≥ 3 there are maps

fn+1 : Mn+1 → Mn, φn+1 : Dn → Dn−1,

which forget the (n + 1)-st marking. Consider a Qp-rational point x ∈ Mn,
corresponding to P1\S with skeleton d. Its fibre f−1

n+1(x) corresponds to P1\S′

for all possible S′ whose first n entries constitute S. Hence, the extra marking
λ ∈ S′ \ S can be taken arbitrarily from P(Qp) \ S. In this way, the space
f−1

n+1(x) can be considered as P1 \ S, and φ−1
n+1(d) as the p-adic dendrogram

for S. What we have seen is that taking fibres recovers the dendrograms
corresponding to points in the space Dn. Instead of fibres of points, one can
take fibres of arbitrary subspaces:

Definition 4.1 A family of dendrograms with n data points over a space Y
is a map Y → Dn from some p-adic space Y to Dn.

For example, take Y = {y1, . . . , yT }. Then a family Y → Dn is a time
series of n collision-free particles, if t ∈ {1, . . . , T} is interpreted as time
variable. It is also possible to take into account colliding particles by using
compactifications of Mn as described in Bradley (2006).

5 Distributions on dendrograms

Given a dendrogram D for some data S = {x1, . . . , xn}, the idea of a clas-
sifier is to incorporate a further datum x /∈ S into the classification scheme
represented by D . Often this is done by assigning probabilities to the vertices
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of D , depending on x. The result is then a family of possible dendrograms for
S ∪ {x} with a certain probability distribution. It is clear that, in the case of
p-adic dendrograms, this family is nothing but φ−1

n+1(d) → Dn, if d ∈ Dn−1 is
the point representing D . This motivates the following definition:

Definition 5.1 A universal p-adic classifier C for n given points is a proba-
bility distribution on Mn+1.

Here, we take on Mn+1 the Borel σ-algebra associated to the open sets of
the Berkovich topology. If x ∈ Mn corresponds to P1 \S, then C induces a dis-
tribution on f−1

n+1(x), hence (after renormalisation) a probability distribution

on φ−1
n+1(d), where d ∈ Dn−1 is the point corresponding to the dendrogram

D(S). The similar holds true for general families of dendrograms, e.g. time
series of particles.

6 Hidden vertices

A vertex v in a p-adic dendrogram D is called hidden, if the class corresponding
to v is not the top class and does not directly contain data points but is
composed of non-trivial subclasses. The subforest of D spanned by its hidden
vertices will be denoted by Dh, and is called the hidden part of D . The number
bh
0 of connected components of Dh measures how the clusters corresponding

to non-hidden vertices are spread within the dendrogram D . We give bounds
for bh

0 and the number vh of hidden vertices, and refer to Bradley (2006) for
the combinatorial proofs (Theorems 8.3 and 8.5).

Theorem 6.1 Let D ∈ Dn. Then

vh ≤
n + 2 − bh

0

2
and bh

0 ≤
n − 4

3
,

where the latter bound is sharp.

7 Conclusions

Since ultrametricity is the natural property which allows classification and
is pervasive in observational data, the techniques of ultrametric analysis and
p-adic geometry are at ones disposal for identifying and exploiting ultrametric-
ity. A p-adic encoding of data provides a way to investigate arithmetic prop-
erties of the p-adic numbers representing the data.

It is our aim to lay the geometric foundation towards p-adic data encoding.
From the geometric point of view it is natural to perform the encoding by
embedding its underlying dendrogram into the Bruhat-Tits tree. In fact, the
dendrogram and its embedding are uniquely determined by the p-adic numbers
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representing the data. For this end, we give an account of p-adic geometry in
order to define p-adic dendrograms as subtrees of the Bruhat-Tits tree.

In the next step we introduce the space of all dendrograms for a given
number of data points which, by p-adic geometry, is contained in the space
Mn of all marked projective lines, an object appearing in the context of the
classification of Riemann surfaces. The advantages of considering the space of
dendrograms rely on the fact that a conceptual formulation of moving parti-
cles as families of dendrograms is made possible, and its simple geometry as
a polyhedral complex. Also, assigning distributions on Mn allows for proba-
bilistic incorporation of further data to a given dendrogram. At the end, we
give bounds for the numbers of hidden vertices and hidden components of
dendrograms.

What remains to do is to computationally exploit the foundations laid in
this article by developping a code along these lines and apply it to Fionn
Murtagh’s task of finding ultrametricity in data.
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