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Abstract

The concept of a “house” is formalised in such a way that its topo-
logical properties can be encoded in a relational database without loss of
information in many important cases.

1 Introduction

Many properties of houses are of topological nature. This is why an encoding
of houses in a database which can handle their topologies is very useful and de-
sired. E.g. DIME is a first step towards this in the two-dimensional case: it can
deal with orientations of embedded planar graphs, however it looses some im-
portant topological information. The problem of three-dimensional encoding is
solved here for a large class of houses by first giving an axiomatic description of
a simplified concept of ”house” as a certain generalisation of a cw-complex and,
secondly, by generalising local observation structures of embedded unconnected
planar graphs discussed in [Hid] to the three-dimensional case and proving that
they allow retrieving the topological properties of these houses. Finally, a loss-
less representation of observation structures in a relational database structure
which we call PLAV is given.

2 Definiton of Topological Houses

In order to be able to encode the topological properties of something like a house
into a database, we must formalise the definition of a house and its topological
properties.

Definition 2.1. A topological house is a compact, connected threedimensional
subset H of R

3, which is the union of finitely many cells satisfying the following
conditions:
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1. The 1-skeleton of H is a graph, and any of its minimal loops is the bound-
ary of a 2-cell of H, if the corresponding edges all lie in the closure of a
2-cell.

2. Each 0-cell lies in the closure of a 2-cell.

3. Each 1- or 2-cell lies in the closure of a 3-cell.

4. Any pair of n-cells (for fixed n 6= 2) is disjoint.

5. If h1 and h2 are 2-cells, then either h1 ∩ h2 = ∅, h1 ⊆ h2 or h2 ⊆ h1.

The 2-cells of a topological house H are called generalised walls, and the 3-cells
are called rooms. A cell inside another cell is called an interior cell.

The simplest kind of house one can imagine is a threedimensional poly-
hedron. However, it has no doors, no windows, no stairs, and no conducts.
Definition 2.1 takes all this into account. The 1-skeleton, for example, is in gen-
eral an unconnected graph: one connected component is normally the skeleton
of the actual building, whereas the other components are columns, pipes, ducts
etc.

A generalised wall can be for example the interior of a wall or door, an
opening in the floor, or (in any case) just the space filling out a loop in the
1-skeleton.

In order to tell whether two topological houses are considered to be of the
same kind, we shall introduce the appropriate type of mappings between houses.

Definition 2.2. Let H and H ′ be topological houses. A house map f : H → H ′

is a continuous map H → H ′ such that for every n ∈ N the image of an n-cell
of H is an n-cell of H ′. Houses H and H ′ are equivalent if there exist house
maps f : H → H ′ and g : H ′ → H which are inverse to each other, i.e. with
f ◦ g = idH′ and g ◦ f = idH . In this case, we shall write H ∼= H ′.

3 Encoding Simple Houses

Generalising the PLA-structure of spatial databases for plane graphs discussed
in [Hid], we define an observation structure on a topological house H.

Let Hn be the set of n-cells of H, and D(H) a database structure on H.
This is just a list of names for each n-cell of H. We assume that the name
indicates also the dimension n of the corresponding cell. Also, we take up an
extra ”cell”: the complementary H∞ := R

3 \H, called the outside of the house.
By abuse of language, we pretend as if H∞ were a cell of H.

Take a point p ∈ H0, and draw a small enough 2-sphere Sp around p. The
intersection of Sp with an n-cell of H will either be empty or an (n − 1)-cell.
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This induces a graph on Sp — a connected planar graph Γp. We convene to put
the point ∞p at infinity on each Sp in the outside of the house, if Sp ∩H∞ 6= ∅.
Otherwise, ∞p will be an arbitrary point in an arbitrary face of the graph.
“Small enough” means that the induced graph on any smaller sphere will be
the same as Γp, if we do not care about the lengths of edges.

Let DH(Γp) be the induced database for Γp as an embedded plane graph:
the name of an n-piece γ ∈ Γp (i.e. a point, a line or an area) is given by a
unique number and the name of the smallest (n + 1)-cell in H containing γ.

Definition 3.1. An observation structure in p ∈ H0 is a triple ObsH(p) :=
(p, Γp, PLA(p)), where PLA(p) is a PLA-structure on DH(Γp).

An observation structure on H is a family ObsH := (ObsH(p))p∈H0
of ob-

servation structures in all points p.

For the convenience of the reader, we recall from [Hid] the definition of a
PLA-structure on DH(Γp): it is a tuple (P, L, A, Obs,∞p), where P , L and A

are the sets of names for points, lines and areas of Γp, respectively; and Obs is
a function which maps every name in P to a circular list of the pieces obtained
by intersecting a small circle around each vertex of Γp with the plane graph Γp

itself.

A local observation structure in
the vertex x given by a graph on
a small sphere around x

The importance of the reference cell H∞ will become evident when trying
to recover houses from observation structures.

Definition 3.2. A topological house H is called simple, if every edge of its
1-skeleton lies in the boundary of a room of H.

In other words, there are no columns allowed, and all pipes are integrated
in the walls.

Remark 3.3. The advantage of considering a simple house H instead of an
arbitrary house is that it corresponds to a partitioning of R

3 which gives rise
to a more simple m-complex X: the 0-, 1- and 3-dimensional pieces of X are
in fact cells, whereas the 2-dimensional pieces are connected manifolds obtained
by taking any maximal 2-cell X of H and cutting out all 2-dimensional holes
defined by the interior cells of X. X is called the architectural complex of H. An
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architectural complex can easily be made into a cw-complex Xcw by connecting
all components of the 1-skeleton by non-intersecting paths through the closures
of the 2-pieces containing them (see also [P]).

Theorem 1. Given an observation structure ObsH on a simple house H, all
houses that can be constructed from it (and that have the same observation
structure) are equivalent to H.

Proof. Let F n denote the n-skeleton of a complex F .

For each p, the graph Γp together with DH(Γp) gives us for each n ≥ 1 local
pieces

Hn
p := {p} ∪

⋃

γ∈Γn−1
p

Cγ,

where Cγ is the minimal cell of H containing γ. It is clear that the family of all
{Hn

p }p∈H0
is an open covering of Hn. The observation structure ObsH(p) gives

us an embedding
jn
p : Hn

p → R
3

for n = 3 which, in turn, induces embeddings jn
p for all smaller n. These

embeddings can be pasted together along induced embeddings

jn
pq : Hn

p ∩ Hn
q → R

3

to an embedding jn : H̃n → R
3. The m-complex obtained by cutting out holes

as in Remark 3.3 is the architectural complex of a simple house H̃ embedded
into R

3 and equivalent to H, as all its n-skeletons H̃n are homeomorphic to the
Hn by the uniqueness property of pasting.

The condition in the definition of “simple” cannot be removed, as the fol-
lowing example shows:
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If both houses have only one room, then they are equivalent, as can be seen
by rotating around the vertical pipe through the room. But in the case of
more rooms, the houses are in general not equivalent, and therefore observation
structures cannot distinguish between the two houses.
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4 PLA-Structures in Relational Databases

Given an embedded planar graph Γ, let the embedding into the plane be encoded
by its PLA-structure (P, L, A, Obs, a∞). In order for this structure to fit into
a relational database, the circular lists in Obs must be represented as relations
in first normal form (NF1). If 〈a0, l0, a1, l1, . . . , an, ln〉 is the observation of the
point p0 ∈ P , then an encoding like

Obs(p0) = {(0, a0), (1, l0), . . . , (2n, an), (2n + 1, ln)} ⊂ N × (L q A)

would be straightforward, but there is a more efficient way.

Let e : L → P × P be an orientation on L making Γ into an oriented graph
ΓP := (P, L, e). Also, let ΓA := (A, L, f) be the dual graph of ΓP with respect
to the planar embedding whose orientation f : L → A × A, l 7→ (of(l), tf (l)) is
defined such that for each l ∈ L the origin of(l) is the area to the left of l and
the target tf (l) is the area to the right. ΓA is called the area adjacency graph
(AAG) of the embedding. With the map

Φ: L 7→ (P × P ) × (A × A), l 7→ (e(l), f(l)),

the quintuple (P, L, A, Φ, a∞) is known as DIME (Dual Independent Map En-
coding). Usually, for each l ∈ L the quaduple Φ(l) is given out.

DIME is commonly used for encoding topological information in geographic
information systems. Although an efficient data structure, it has the disadvan-
tage of losing some topological information.

Consider a clover-like graph: one point, three lines, three 2-cells and one
exterior area. It has the following PLA-structure:

(P = {p}, L = {l1, l2, l3}, A = {a1, a2, a3, a∞},

Obs(p) = 〈a∞, l1, a1, l1, a∞, l2, a2, l2, a∞, l3, a3, l3〉, a∞).

Let its DIME be







l1 : (p, p, a1, a∞)
l2 : (p, p, a∞, a2)
l3 : (p, p, a3, a∞)

. Every line l : (p, q, a, b) gives the sub-

sequence 〈b, l, a〉 in the observation structure of p and 〈b, l, a〉 in that of q.
Unfortunately, this is not enough for recovering this example uniquely:
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Only the first clover has the correct observation structure. Uniqueness is ob-
tained by enumerating all incident lines in the order they appear locally at every
given point p:

ord(p) :=
m
⋃

i=1

{(i, ϕ(lσ(i)))},

where

ϕ : L → {±1} × L, l 7→

{

(+1, l), if l comes into p

(−1, l), if l goes out of p

and lσ(i) is the line on the i-th place in the list obtained from Obs(p) by deleting
all area names.

In this example, Ord(p) = {(1, l1), (2,−l1), (3,−l2), (4, l2), (5, l3), (6,−l3)}
for the left clover and Ord(p) = {(1, l1), (2,−l1), (3, l3), (4,−l3), (5,−l2), (6, l2)}
for the right clover.

In fact, this works for any connected graph embedded into a compact, ori-
entable surface [GT]. And for the general case, the dual graph can be success-
fully used, as we will see now.

In what follows, R = R(π1, . . . , πs, πs+1, . . . , πt) will denote any relational
scheme with Π = {π1, . . . , πs} as a key and some (more or less specified) addi-
tional functional dependencies.

Here, we consider

Gr(πL, origin, target) ⊆ P(L × P × P )
Aag(πL, left, right) ⊆ P(L × A × A)
Ord(πP , πN, dir, line) ⊆ P(P × N × {±1} × L)

where Gr represents the graph, Aag the AAG, and Ord respecting the functional
dependencies {πP , πN} → {dir, line}, represents ord from above. P(X) means
the set of all subsets of X and πX the canonical projection onto X (all other
attributess are supposed to be self-explaining).

Note that the join of Aag and G yields DIME.

In our setup, Gr is actually redundant, as the following lemma shows.

Lemma 4.1. The relational schemes Aag and Ord together are a lossless en-
coding of embedded planar graphs (up to topological equivalence).

Proof. The PLA-structure of an embedded planar graph Γ can easily be re-
trieved from the directed dual graph and all ord(p) with p ∈ P . By [Hid,
Theorem 1] the PLA-structure recovers the embedding of Γ into the plane up
to isotopy, which gives the result.
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A simple SQL query retrieves the observation structure obs(p0) of a given
point p0 ∈ P in a form like:

m
⋃

i=1

{(i, lσ(i), aτ(i))} ⊆ N × L × (A ∪ {a∞}),

a relation in NF1. So this data structure is also a lossless representation of
topological information.

5 PLAV-Structures in Relational Databases

Here, we extend the relational PLA-structure from the preceding section to
three dimensions.

For a topological house H let X be its architectural complex with points P ,
lines L, areas A and volumes V . Orient the lines L and the areas A.

Since the intersection of a volume or an area with a local sphere Sp is in
general unconnected, some extra book keeping is needed. The relational schemes

locL(πP , πN, line) ⊆ P(P × N × L)

locA(πP , πN, area) ⊆ P(P × N × A)

locV (πP , πN, volume) ⊆ P(P × N × V )

enumerate lines, areas, resp. volumes locally as points, lines, resp. areas on each
Sp.

Local parts of the VAG on the spheres Sp are obtained by

locV ag(πP , πN, left, right) ⊆ P(P × locA.πN × locV.πN × locV.πN),

where for a ∈ A a connected component of a∩ Sp is taken together with its left
and right neighbouring component of v ∩ Sp for some v ∈ V .

The pasting (in the case of simple houses) is encoded in

glue(line, πN, odir, oarea, tarea) ⊆ P(L × N × {±1} × A × A).

Here, a circular list of observed areas a ∈ A incident in a line l ∈ L is encoded in
this way: if the i-th observation of an area is a, then odir is the local direction of
the corresponding component e of a∩So(l), oarea is its local name and tarea the
local name of the component ẽ of a∩St(l) corresponding to this i-th observation
(the direction of tarea is the inverse of odir).

An example of a local observation
of a line whose glue is

(l, 1,−1, u, x)

(l, 2,−1, v, y)

(l, 3, +1, w, z)
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Consider the system of relational schemes

PLAV: {X1, locL, locA, locV, locV ag, glue},

where X1(line, origin, target) ⊆ P(L × P × P ) represents the 1-skeleton X1

oriented as L. This is the database version of ObsH from Section 3.

Theorem 2. The system of relational schemes PLAV is a lossless represen-
tation (up to equivalence) of local point observations of houses in a relational
database.

Proof. From PLAV, one easily obtains the local versions of Aag and Ord for
each local graph Γo(l) on So(l) with l ∈ L, whereas in t(l), the observation list
has to be reversed. So, by Lemma 4.1, all Γp are recovered.

By construction, we get together with Theorem 1:

Corollary 5.1. PLAV is a lossless encoding of simple houses.

6 Conclusion

A relational data structure for encoding the PLAV-structure of houses using
local PLA-structures was obtained by exploiting the combinatorics of their ar-
chitectural complexes. Possibly further normalisation can be done, making
PLAV an interesting approach towards encoding three-dimensional topological
information in databases.

The loss of information observed in general is likely to be covered by some
knot theory, or by using the metric of the ambient space as do geographic
information systems which use DIME.

In a next step, we expect PLAV to be useful for encoding higher dimensional
topological spaces, in particular (architectural) space-time complexes.
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