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Abstract. A p-adic variation of the Ran(dom) Sa(mple) C(onsensus) method

for solving the relative pose problem in stereo vision is developped. From
two 2-adically encoded images a random sample of five pairs of correspond-
ing points is taken, and the equations for the essential matrix are solved by
lifting solutions modulo 2 to the 2-adic integers. A recently devised p-adic

hierarchical classification algorithm imitiating the known LBG quantisation
method classifies the solutions for all the samples after having determined the
number of clusters using the known intra-inter validity of clusterings. In the

successful case, a cluster ranking will determine the cluster containg a 2-adic
approximation to the “true” solution of the problem.
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1. Introduction

High dimensional and sparse encodings of data tend to be ultrametric, and ul-
trametric spaces allow certain computational operations, like nearest neighbour
finding, to be carried out very efficiently [17]. This suggests, for the task of hierar-
chical classification, an ultrametric encoding of data from the start. This has the
advantage that the hierarchical structure is uniquely determined by the ultrametric,
however at the price of having to find a suitable encoding in an ultrametric space
[4]. A natural family of ultrametric spaces is given by Qp, the p-adic numbers for
any prime number p of choice. A first application of classification algorithms to
p-adic data in image segmentation is described in [1], where it was found that the
p-adic algorithms outperformed their classical counterparts in efficiency. In [5], it
was observed that p-adic clustering algorithms need not change the metric when
computing distances between clusters.

The task of finding optimal classifications lead to the well-known LBG algorithm,
named after the initials of their authors [15]. The clusters from the previous step
are split by regrouping the data around the new “centres” in an optimal way. A
direct p-adic analogue does not exist. However, if clusters are interpreted as vertices
in the dendrogram for the given data, then splitting can be performed by replacing
a vertex by its children. Splitting in direction of highest gain and, after finding the
clustering, determining cluster centres leads to what we call LBGp algorithm [3].
For LBG, the desired number of clusters has to be pre-specified. For LBGp, we
have a pre-specified upper bound for the cluster number. This leads to the issue of
determining that number or bound. In [20], an optimisation scheme for the number
of clusters is developped for the k-means clustering algorithm. We propose a p-adic
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adaptation of this for choosing optimal clusterings among the LBGp-optimal ones
of varying size.

An important algorithm in image analysis is Random Sample Consensus, known
as RANSAC [7]. In short, this is a general method for fitting a model to exper-
imental data by randomly sampling the minimal number of points necessary for
the fit. Then that set of feasible points is enlarged by adding all nearby points,
i.e. those points having a fitted model not much different from the first fit. This
is the consensus set. The sample with largest consensus set yields the best model
prediction. A variation of this idea would be to perform a classification of the fitted
models for all random samples taken from the data. Then the biggest cluster (with
respect to some measure) contains in its centre the “true” model. Here, we describe
a p-adic form of this random sample consensus via classification using the LBGp

algorithm, applied to the relative pose problem in stereo vision as described in the
following paragraph.

The issue of estimating camera motion from two views is classical by now, and
methods from projective and algebraic geometry towards its solution were employed
already at an early stage. The relationship between the views is established by find-
ing correspondences between point pairs taken from both images. The fundamental
matrix faithfully encodes the geometric relationship between the two images. For
normalised cameras, the fundamental matrix coincides with the so-called essential
matrix. In general, the two matrices are related through the camera calibration.
Hence, if the calibration is known, it is sufficient to estimate the essential matrix
in order to solve the relative pose problem upto a sign ambiguity. In order to ef-
ficiently use a RANSAC for this task, it makes sense to use in each sample the
minimal number of point correspondences needed. This number is known to be five
[13]. Only recently, an efficient solution to the five-point relative pose problem has
been developped [18]. The first algorithms use eight point pairs, for which all equa-
tions are linear [16]. Seven point pairs require a non-linear constraint, and so does
the method using six points [9, 11, 19]. The idea for the five point problem is to first
solve the five linear constraints, and then insert the general solution into the other
constraints. This leads to nine homogeneous cubic equations in four unknowns.
These describe a subspace S of projective three-space P3 over the ground field K,
and the relative pose problem has a solution if the space S is zero-dimensional. In
that case, it is known to be of cardinality ten [6], if multiplicities are taken into
account and all solutions from an algebraic closure of K are allowed. Nistér’s ap-
proach is to eliminate variables and then numerically solve the resulting univariate
polynomial of degree 10. An alternative natural approach is by using Gröbner bases
[21]. A formulation of the problem as a polynomial eigenvalue problem which can
be solved robustly and efficiently is found in [14].

By considering image coordinates as 2-adic numbers, e.g. through an interval
subdivision process, we can rewrite the equations for the five-point relative pose
problem as polynomials with coefficients in Z2, the 2-adic integers. This allows us
to use Hensel’s lifting method for their solution, and we arrive at 2-adic essential
matrices which can be approximated by finite 2-adic expansions depending on the
desired resolution. In this article, we take a closer look at the structure of the cubic
equations and arrive at a union of algebraic varieties defined by linear and quadratic
equations which have to be intersected with the remaining cubic constraint over the
field F2 in the initial stage before the lifting. An efficient solution of those particular
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equations with Gröbner bases is deferred to future work. However, we expect
the existing literature on Gröbner basis methods for equations over finite fields to
provide results which can be “tuned” to our situation. The advantage of using the
field F2 is that Gröbner basis computations become very efficient. Together with our
decomposition into quadratic and linear equations, we expect higher performance
in comparison with the real methods operating on the undecomposed equations.
Using the Hensel lifting methods leads us to expect higher robustness. However,
these expectations yet await practical evaluation.

The following section collects general facts on p-adic numbers which we will use,
and fixes some notation. For the convenience of the reader, we prove that p-adic
vectors can be viewed as p-adic numbers in an unramified extension field of Qp via
an isometric isomorphism. In Section 3, we review the LBGp algorithm and show
how one can determine the number of clusters. Section 4 explains how to arrive at
a 2-adic encoding of image coordinates, and then develops the lifting algorithm for
the five-point relative pose equations. Section 5 incorporates that algorithm into
RanSaCp, the random sample consensus algorithm via classification.

Some part of this article was presented at the Fourth International Conference
on p-Adic Mathematical Physics p-ADIC MATHPHYS.2009 which took place near
Grodna, Belarus.

2. Generalities

In this section, we review some facts about p-adic numbers for later use. A gen-
eral introduction can be found in [8], the Haar measure on local fields is introduced
in [22].

2.1. p-adic fields. Let p be a prime number, and K a field which is a finite exten-
sion field of the field Qp of rational p-adic numbers. We call K a p-adic field, and
its elements simply p-adic numbers. K is a normed field whose norm | |K extends
the p-adic norm | |p on Qp. Let OK := {x ∈ K | |x|K ≤ 1} denote the local ring of

integers of K. Its maximal ideal mK = {x ∈ K | |x|K < 1} is generated by a uni-
formiser π. It has the property v(π) = 1

e
, where e ∈ N is the ramification degree

of K/Qp. If e = 1, then K is called unramified over Qp.

All elements x ∈ K have a π-adic expansion

x =
∑

i≥−m

αiπ
i(1)

with coefficients αi in some set R ⊆ K of representatives for the residue field
OK/mK

∼= Fpf . In the case f = 1, the choice R = {0, 1, . . . , p − 1} is quite often
made. If K is unramified of degree n over Qp, then f = n.

The Haar measure on K will be denoted by dx and is normalised to

∫

OK

dx = 1.
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2.2. p-adic vectors as p-adic algebraic numbers. In this subsection, we show
how to consider higher-dimensional p-adic data as one-dimensional data in some
appropriate unramified field extension. As a consequence, any classification method
with p-adic numbers can be applied to p-adic vector data.

On the vector space Qn
p there is the maximum norm ‖·‖max given by

‖x‖max = max
{

|x1|p , . . . , |xn|p

}

,

where x = (x1, . . . , xn) ∈ Qn
p . The following lemma allows to consider vectors as

one-dimensional objects in some p-adic number field:

Lemma 2.1. There is an isometric isomorphism between normed vector spaces:

(Qn
p , ‖·‖max)

∼= (K, |·|K),

where K is any unramified extension field of Qp of degree n. Furthermore, for all
n there exists such a p-adic field K.

Proof. Isometry. Any x ∈ K has a p-adic expansion

x =
∑

ν≥m

aνpν ,(2)

where p retains the uniformising property, because K is unramified over Qp. The
coefficients aν ∈ K are taken from a set R of representatives of the residue field
κ = OK/pOK

∼= Fpn , where R contains the zero element of K. The residue field,
as a vector space, is isomorphic to Fn

p . Hence, the coefficients can be identified with
vectors in Qp whose entries are taken from the set {0, . . . , p − 1} which represents
the residue field Fp. This yields a bijection between K and Qn

p which is in fact

an isomorphism of vector spaces. Observe now that the norm |x|K = p−m, where
m ∈ Z is the smallest exponent ν of p in the p-adic expansion (2) of x such that
aν 6= 0. By the above identification of x with a vector (x1, . . . , xn) ∈ Qn

p , this
means that m is the smallest exponent for which the coefficient is not the zero
vector. Hence,

|x|K = p−m = ‖(x1, . . . , xn)‖max

as asserted.

Existence. Let ζ be a primitive (pn − 1)-th root of unity. Then the cyclotomic field
K = Qp(ζ) is an unramified extension field of Qp of degree n [8, Prop. 5.4.11]. ¤

Consequently, a set of n-dimensional p-adic vectors can be treated as data taken
from a one-dimensional algebraic p-adic field K. Hence, its dendrogram for the
maximum norm can be viewed as a subtree of the Bruhat-Tits tree for K. In
particular, the classification methods from [3, 5] for data from K apply to this case.

3. An almost optimal p-adic classification algorithm

After briefly reviewing the p-adic variation of the hierarchical classification al-
gorithm of [15], we show how to determine the optimal number of clusters in the
p-adic case. More details on the p-adic classification algorithm can be found in [3].
The cluster number determination is a p-adic analogue of the method from [20].
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3.1. LBGp. In [15] a clustering algorithm is presented which determines optimal
clusterings of given real vector data. This so-called split-LBG algorithm constructs
cluster centres around which the data are grouped in an optimal manner. This
method has no direct p-adic analogon. However, [3] shows an adaptation of the
split-LBG algorithm to p-adic data which locally minimises the expression

E(C ,a) =
∑

c∈C

∑

x∈C

|x − aC |K ,

where C is a partition (clustering) of given data X, and a = (aC)C∈C consists
of centres of clusters C. The clusterings are bounded a priori in size by |C | ≤ k.
The method is to first subdivide given clusters in order to obtain largest decrease
in E(C ,a), and then within the found clustering to find centres in a second step.
The centres are characterised by their minimising property for E(C ,a) with a given
clustering C . More details can be found in [3]. The cluster centres will be used
later in Section 5 for obtaining an estimated solution to the relative pose problem
in stereo vision.

3.2. Determining the number of clusters. The LBGp algorithm as described
in the previous subsection uses as input a pre-specified upper bound for the number
of clusters. Usually, however, this number is not known a priori. There are in the
literature various methods for finding optimal cluster numbers. The application we
have in mind is to find a clustering in which one cluster contains the “best” approx-
imations to some unknown quantity, and the other clusters are “outliers”. Hence,
the ideal clustering should contain compact clusters which are well separated. For
this reason, we define a p-adic version of the intra-inter-validity index from [20].

Let X ⊆ K be a finite set, and Xk(X) the set of all verticial clusterings of X
with cardinality ℓ ≤ k. For a choice of cluster centres a = (aC)C∈C in a given
clustering C ∈ Xk(X), we define the following quantities:

Intra(C ) =
1

|X|

∑

C∈C

∑

x∈C

|x − aC |K

Inter(C ) = min
C 6=C′∈C

|aC − aC′ |K

Validity(C ) =
Intra

Inter

Lemma 3.1. Intra and Inter do not depend on the choice of cluster centres a.

Proof. Intra. This follows from the definition of cluster centre, as

Intra(C ) =
1

|X|
E(C ,a).

Inter. This follows from the strict triangle inequality, as distinct clusters C 6= C ′

from C are disjoint. ¤

The function Intra measures the compactness of a cluster, whereas Inter is a
measure for the inter-cluster distance. A “good” clustering would minimise Intra
and maximise Inter. So, an obvious measure combining both tasks is given by
Validity as the ratio of both measures.
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Definition 3.2. The quantity

vik(X) = min
C∈Xk(X)

Validity(C )

is called the k-th validity index of the data X.

Lemma 3.3. If N = |X|, then viN (X) = 0.

Proof. This follows from the fact that XN contains the clustering consisting of N
singletons. ¤

Hence, the ideal cluster number is to be determined by computing the k-th
validity index for k << N .

Remark 3.4. It is to be expected that for genuine data X, the decreasing function
k 7→ vik(X) remains constant on some large interval I inside {2, . . . , |X|}, and that
the minimum of Validity on Xk with k ∈ I is attained on some clustering C ∈ Xk

such that |C | << |X|.

Definition 3.5. A clustering C of minimal validity in the sense of Remark 3.4 is
called an ideal clustering.

4. The dyadic 5-point relative pose equations from stereo vision

A first p-adic formulation of the n-point relative pose problem of stereo vision is
presented in [2]. There, the equations are derived from a p-adic projective camera
model. Here, we first review the 2-adic image encoding from a hierarchical classifi-
cation point of view, and then propose a refined lifting algorithm from the reduced
equations modulo 2 to Z2-rational solutions.

4.1. 2-adic image encoding. Let R ⊆ Rn be the unit hypercube [0, 1]n. It can
be subdivided by n hyperplanes parallel to the coordinate hyperplanes into 2n

hypercubes of equal volume. Each of these smaller hypercubes can be subdivided
into even smaller hypercubes in the same way. Repeating this process yields an
infinite rooted tree T whose vertices are those hypercubes, and edges are given by
pairs (Rn, Rn+1) of hypercubes where Rn+1 is one of the parts of Rn obtained in
the n-th subdivision step. The root of T is given by R0 = R, and each vertex has
2n children vertices.

Let v be a vertex of T , and denote ch(v) the set of its children vertices. A family
χ of bijections

χv : ch(v) → {0, 1}n

defines a labelling λχ on Edges(T ), the set of edges of T :

λχ : Edges(T ) → {0, 1}n
, (v, w) 7→ χv(w),

and this allows for a 2-adic encoding of R, as will be seen in the following.
First, observe that an end of T , i.e. an infinite (injective) path beginning in R0,

corresponds to a decreasing sequence of hypercubes

R0 ⊇ R1 ⊇ R2 ⊇ . . .

having a limit
⋂

ν∈N

Rν = {r}
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with a well defined point r ∈ R. This yields an inclusion map

ι : Ends(T ) → R,

where Ends(T ) is the set of ends of T .
We can view an end γ as a tree whose edges e0, e1, e2, . . . are directed away from

the root R0. They can be numbered by saying that ν(e) is the number of edges on
the path segment [R0, o(e)], where o(e) is the origin vertex of e. Now, traversing
down a path γ ∈ Ends(T ) and picking up the labels on edges e ∈ Edges(γ) along
the path yields a 2-adic vector, as given by the map

̟χ : Ends(T ) → Zn
2 , γ 7→

∑

e∈Edges(γ)

λχ(e) 2ν(e),

and which can be interpreted as an algebraic p-adic number in some unramified
p-adic field K by Lemma 2.1.

Lemma 4.1. The map ̟χ is bijective, and there exists a labelling λχ such that
ι ◦ ̟−1

χ coincides with the map

µ2 : Zn
2 → R, a =

∑

ν∈N

αν 2ν 7→
∑

ν∈N

αν2−(ν+1),

with aν ∈ {0, 1}n
.

Proof. ̟χ bijective. A 2-adic vector in Zn
2 corresponds uniquely to a sequence

λ0, λ1, λ2, . . . of elements from {0, 1}n
. This in turn corresponds uniquely to a

path from R0 by construction of the labels on Edges(T ). Hence, ̟χ is bijective.

µ2. Let χµ be the family of bijections

χµ
v : ch(v) → {0, 1}n

given by the following construction. Consider the case n = 1. Then T is a binary
tree in which for given vertex v any w ∈ ch(v) corresponds to the interval Rw

which is either the left or the right half of the interval Rv ⊆ [0, 1] corresponding to
v. Now, by defining

χµ
v : ch(v) → {0, 1}, w 7→

{

0, Rw is the left half of Rv

1, Rw is the right half of Rv

we obtain the labelling λµ := λχµ , and the map ̟µ := ̟χµ . We need to prove that
⋂

v∈Vert(γ)

Rv = {µ2(̟µ(γ))}

for all γ ∈ Ends(T ). Let γν be the segment of γ given by the first edges e0, . . . , eν .
The terminal vertex of γν corresponds to an interval Rν+1 of length 1

2ν+1 . Let xν+1

be the left boundary of Rν+1. Inductively, it can be seen as given by

xν+1 = xν + ǫν ·
1

2ν+1
,

where xν is the left boundary of Rν and ǫν ∈ {0, 1}. Clearly, it holds true that

ǫν = χµ
vν

(vν+1) = λµ(eν),

if edge eν is given as eν = (vν , vν+1). Hence,

̟µ(γ) =
∑

ν∈N

ǫν2ν ,
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and it follows that the sequence (xν) converges with respect to the Euclidean ab-
solute norm to

∑

ν∈N

ǫν2−(ν+1) = µ2(̟µ(γ)),

as asserted.

The general case follows from the case n = 1 by applying it to each individual
coordinate. ¤

Since µ2 is a bijection, it follows that ι is bijective, too.

Remark 4.2. A rectangular photographic image can be viewed as a rectangular
domain in R2. A digital image, however, will be represented for simplicity by an
N × N grid in R2 in which we may assume that N = 2n. Hence, the points on
the image grid correspond bijectively to the elements of Z/2nZ × Z/2nZ, and the
exponent n defines the resolution of the image. The subdivision process as before
increases each coordinate resolution by 1, and only the physical restrictions prevent
us from obtaining a 2-adic image grid Z2×Z2. Hence, we may assume two idealised
encodings of the digital image square: the Archimedean one is a real square given
by the unit square [0, 1]2 ⊆ R2, and the p-adic encoding is Z2 × Z2. The two ideal
encodings are assumed compatible in the sense that the Monna map µ2 : Z2

2 → R2

embeds the one into the other. Physically, the real or 2-adic coordinates will be
approximated in finite resolution by a grid isomorphic to Z/2nZ with varying (and
ideally arbitrary) n.

4.2. The linear and cubic equations. Assume that there are two views on a
static 3D scene taken by cameras with known calibration. Here, the camera model
is projective, and we briefly explain how the equations for estimating the geometric
relationship between the two 2D views are derived. For an introduction to multiple
view geometry we refer to [10].

A projective camera is a projective map P3 → P2. If two such maps are given,
the geometric relationship between the two images I and I ′ allow to estimate a
recontsruction of the 3D scene. This relationship is given by the so-called essential
matrix E, a projective 3 × 3 matrix satisfying

uT
i E u′

i = 0 (i = 1, . . . , N),(3)

where ui ∈ I and u′
i ∈ I ′ are image points corresponding to the same point in

3-space. They are given as vectors with 3 homogeneous coordinates. The equations
(3) are linear in the 9 unknown entries of E. Reconstruction from E is possible
through the factorisation

E = T · R,

where T is a skew-symmetric matrix, and R a rotation. The matrix T gives the
translation in 3-space from the one camera to the other, and R their relative angular
orientation. There is an ambiguity given by the alternative factorisation

E = (−T ) · (−R),

but this will not be of concern here.
Since E is a projective matrix, N = 8 sufficiently general point correspondences

uniquely determine E. In fact, there exists a reconstruction algorithm which works
in this way [16]. However, that method ignores the fact that an essential matrix
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is necessarily of rank 2. So, a 7-point algorithm came up replacing one of the
equations in (3) by the cubic equation

det(E) = 0

[9, 11]. A 6-point algorithm is described in [19]. It is known that the minimal
number of point correspondences necessary for solving the relative pose problem is
five. We now briefly review the essentials of the 5-point algorithm by [18].

The first step is to solve the linear system (3) with N = 5. The general solution
is of the form

E = x1E1 + x2E2 + x3E3 + x4E4,(4)

where {E1, . . . , E4} is a basis for the solution space of (3). Here, it is assumed that
the 5 corresponding points are chosen in such a way that the rank of the system is
five.

In the second step, the matrix (4) is plugged into the non-linear conditions for
the essential matrix. These are given as

2 · EET E − Trace(EET ) · E = 0(5)

det(E) = 0(6)

This yields 10 homogeneous cubic equations in the four unknowns x, y, z, w. The
original method by Nistér is to set w = 1, eliminate variables and obtain a univari-
ate polynomial f(z) of degree 10. The zeros of f(z) then lead to maximally ten
candidate essential matrices (after discarding the non-real solutions).

Using the 2-adic image encoding from the previous subsection, we obtain for the
5-point relative pose problem the same equations (3), (5) and (6). The difference
is now that the coefficients are 2-adic expansions of natural integers, and that the
wanted solution is a set of 2-adic essential matrices. In the following subsection,
we will explain how this can be obtained effectively by Hensel’s lifting method.

4.3. Lifting the equations to Z2. The structure of the equations from the pre-
vious subsection depends on the particular sample of five corresponding pairs of
points which in the following will simply be referred to as the sample. The algo-
rithm later on will terminate either with a set of solutions or with a resampling
routine, meaning that another set of five corresponding point pairs has to be chosen.

Let F ⊆ k[x1, . . . , xn] be a set of polynomials with coefficients in a field k. Then
the zero set of F will be denoted as V (F ):

V (F ) := {(ξ1, . . . , ξn) ∈ kn | f(ξ1, . . . , ξn) = 0 for all f ∈ F}.

This is also called a variety defined over k. Let R be a unitary commutative ring
contained in the algebraic closure kalg of k, and V ⊆ kn a variety defined over
k. Then the R-rational points of V are those points of Vkalg lying in Rn, where
Vkalg ⊆ (kalg)n is V (F ) seen as a variety defined over kalg. In particular, we will
speak of k-rational points of a variety defined over k. The set of R-rational points
of V will be denoted by V (R).
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4.3.1. The linear equations. Assume that N = 5. The simplest case for applying
Hensel’s lifting method is that, after dividing off each equation the least common
divisor of the coefficients, the linear equations (3) are linearly independent modulo
2. Then, by the multivariate linear Hensel lemma, e.g. [2, Thm. 2], there is a unique
lift of a basis of the solution space of (3) modulo 2 to a Z2-basis of the solution
space of (3). The constructive nature of the proof yields a lifting algorithm.

4.3.2. The cubic equations. The system (5) is modulo 2 of the form

Trace(EET ) · E ≡ 0 mod 2(7)

By construction, the entries of E are zero or homogeneous linear polynomials in
x1, x2, x3, x4. As in 4.3.1, we assume that E is not the zero matrix modulo 2. In
any case, the diagonal elements are zero or squares of linear forms. Hence, the
polynomial

Q(x1, x2, x3, x4) = Trace(EET ) mod 2

is a sum of squares:

Q =

4
∑

i=1

α1x
2
i = L2,

where α1, . . . , α4 ∈ F2 and

L =

4
∑

i=1

αixi

is linear. From this it follows that (7) is of the form

L2 · Li = 0, i = 1, . . . , 9,(8)

with Li either zero or linear modulo 2. If we assume that the F2-basis E1, . . . , E4

of (3) modulo 2 is read off a staircase normal form for the reduced linear system
of equations, we observe that the matrix E mod 2 contains four entries consisting
precisely of the variables x1, x2, x3, x4. Hence, the four equations L2 · xi = 0 are
among (8), and it follows that the solution of that system is given by

L = 0(9)

over the finite field F2. However, the variety V (L) defined by (9) is a hyperplane in
the projective space P3

F2
, whereas (5) defines a curve in P3

Q2
for a generic sample

of five corresponding point pairs.
In any case, by the multivariate Hensel lemma [2, Thm. 1] the points of the set

V = {x ∈ V (L) ∩ V (det(E) mod 2) | ∇det(E)(x) 6≡ 0 mod 2}

are uniquely liftable to Z2-rational points in P3, as long as det(E) is modulo 2 not
the zero polynomial.

In order to obtain more liftable points, we take a closer look at the variety given
by (5). Write to this aim

E = (Eij) =





e1

e2

e3



 ,(10)

where ei are the rows of E. Then (5) translates to

(2EET − Trace(EET ) · 1) · E = 0,(11)



A p-ADIC RANSAC ALGORITHM FOR STEREO VISION USING HENSEL LIFTING 11

where 1 is the unity 3×3-matrix. By multiplying from the right with some invertible
matrix, we may replace the rightmost matrix in (11) by a triangular matrix

T =





T11 T12 T13

0 T22 T23

0 0 T33



 .

Using (10), this is equivalent to the system

T11





e2
1 − e2

2 − e2
3

2e1e2

2e1e3



 = 0

T12





e2
1 − e2

2 − e2
3

2e1e2

2e1e3



 + T22





2e1e2

e2
2 − e2

1 − e2
3

2e2e3



 = 0

T13





e2
1 − e2

2 − e2
3

2e1e2

2e1e3



 + T23





2e1e2

e2
2 − e2

1 − e2
3

2e2e3



 + T33





2e1e3

2e2e3

e2
3 − e2

1 − e2
2



 = 0

where we use the sloppy notation e2 = eeT and eiej = eie
T
j . This can be simplified

to

T11





e2
1 − e2

2 − e2
3

2e1e2

2e1e3



 = 0(12)

T11T22





2e1e2

e2
2 − e2

1 − e2
3

2e2e3



 = 0(13)

T11T22T33





2e1e3

2e2e3

e2
3 − e2

1 − e2
2



 = 0(14)

Assume now that in (12)-(14) the least common divisor of the coefficients for each
row in each equation (or just the highest common power of 2) has been divided off.
The equations can now successively be simplified in a straightforward manner. This
leads to a union of at most 14 varieties Wi, each of which is defined by quadratic and
linear equations. We call this the sampled five-point trace variety W . Of interest is
the case that V := W ∩ V (det(E)) has dimension one.

Notice that
det(E) = 0 ⇔ det(A) = 0,

where A = (Aij). We set

Vi := Wi ∩ V (det(A)) = V (Fi) ⊆ A4,

where Fi is the set of linear and quadratic polynomials from above, together with
the cubic polynomial det(A). The sampled five points lead to finitely many candi-
date essential matrix if and only if the image V̄i under the canonical map

A4 \ {0} → P3

is zero-dimensional for all i such that Vi \ {0} 6= ∅. The dimension can be checked
on each affine chart xi 6= 0. For this, we denote by

F
j
i :=

{

f |xj=1 | f ∈ Fi

}
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and

V j
i := V (F j

i ) ⊆ A3

the affine piece of Vi given by xj = 1.

If F is a set of polynomials with coefficients in Z2, then F mod 2 means the
set consisting of the polynomials from F with coefficients modulo 2. By V (F )
mod 2 we mean the zero set of F mod 2 defined over F2. We declare

dim ∅ := −1,

and arrive at the following lifting algorithm:

Algorithm 4.3. Input. The reduced matrix A with coefficients in Z2[x1, x2, x3, x4].

Step 1. Compute for all i the set Fi as above, and Fi mod 2. If for some i the
latter contains a non-zero polynomial, then continue. Otherwise, resample.

Step 2. Compute for all i the dimension di := dim(V̄i mod 2) on each affine piece

V j
i mod 2, j = 1, . . . , 4. If all di ≤ 0, then continue, otherwise resample.

Step 3. Compute all F2-rational points of Vi mod 2, and for all such ω ∈ Vi mod 2
the quantity ∇f(ω), where f ∈ Fi mod 2. If some value is

∇f(ω) 6≡ 0 mod 2,

then lift for that f and collect all lifts in the set Ṽi. If Ṽi 6= ∅, then continue.
Otherwise, resample.

Step 5. Test for all i and all v ∈ Ṽi whether all quantities f(v) with f ∈ Fi are
zero. Collect all positively tested v in S ⊆ A4.

Output. The lifted finite set

S̄ ⊆ P3(Z2)

of Z2-rational solutions.

Observe that there is a dimension computation in Step 2, and a solution set
computation in Step 3, both for equations modulo 2. These can be effected with
Gröbner basis methods, as described e.g. in [12, Cor. 3.7.26].

5. p-adic random sample consensus via classification

In this section, we incorporate Algorithm 4.3 into a sampling scheme in which
random samples of five point-pairs are taken, and the output of the lifting algorithm
is collected, and then classified. The idea is that in the end, a pronounced cluster
will appear in the classification which contains among its central elements the “true”
essential matrix. Our approach differs from the original RANSAC [7] in that we
fix the number of samplings instead of the cardinality of the consensus set, and
that we perform a hierarchical classification of the solutions from each sample. The
consensus set corresponds here to one of the clusters in the classification.

Let K be a p-adic field.

Definition 5.1. Let C ⊆ K be a cluster, and let A ⊆ C be the subset of of all
central elements with respect to E. Then the rooted tree S(C) := T †(A ∪ {∞)} is
called the central spine of C.
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Since all central elements branch off the tips of S(C), the central spine of a
cluster C says something about the distribution of the data within C.

We define the densitiy of a verticial cluster C as

δ(C) :=







|C| − 1

µ(C)
, |C| > 1

0, otherwise

where

µ(C) =

∫

K

1DC
dx,

with DC ⊆ K being the smallest disk containing C and

1DC
: K → R, x 7→

{

1, x ∈ C

0, otherwise

the characteristic function.

The following algorithm is a p-adic analogon of a variation of the Ran(dom)
Sa(mple) C(onsensus) algorithm [7] applied to the problem of estimating the es-
sential matrix from two images. In this variation, the consensus is established by
a hierarchical classification of the collected solutions for the equations given by the
sampled five-tuples of corresponding image points. In order to establish the “win-
ning” cluster, we consider each sample as casting upto ten votes. Then we establish
a ranking of clusters according to the following criteria:

(1) majority of votes
(2) highest density
(3) highest precision

These criteria are to be taken in that order, i.e. the clusters are ranked according
to criterion (1). Ties are first broken using criterion (2), and then with criterion
(3). This means a ranking of clusters

(1) according to their size
(2) according to δ(C)
(3) according to µ(Cc),

where the Cc is given by the following definition:

Definition 5.2. Let C ⊆ K. Then the central cluster in C is the smallest verticial
subcluster of C containing the centres of C.

Remark 5.3. In the case that the differences in size, density or precision are
small among the high ranked clusters, it makes sense to allow almost equally ranked
clusters to be considered as ties and to use the next criterion to break them.

Fix an isometric isomorphism (K, |·|K) ∼= (Q3×3
2 , ‖·‖max), where K is an unram-

ified extension field of Q2, and ‖·‖max is the maximum of the 2-adic norms of all
matrix entries.
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Algorithm 5.4 (RanSaCp). Input. Numbers k,m, n,N ∈ N and a finite set X ⊆
I × I ′ of pairs of corresponding points in two images I and I ′ represented as 2-adic
vectors.

Step 1. Sample five random elements of X. If the equations (3) modulo 2 have rank
5, then solve these by lifting a basis modulo 2 to a basis modulo 2n. If n >> 0, then
the lift yields exact solutions in Z2. If modulo 2 the rank is smaller than five, then
resample.

Step 2. Perform Algorithm 4.3 by lifting to solutions modulo Z/2mZ, where m is
the desired precision. Obtain a set of approximate candidate essential matrices with
entries in Z/2mZ. If that set is non-empty, then continue. Otherwise, resample.

Step 3. Repeat Steps 1 and 2 successively N times, and obtain an accumulated set
E of approximate candidate essential matrices from each repetition.

Step 4. Use the LBGp algorithm over K for obtaining ≤ ℓ clusterings of E with
ℓ = 2, . . . , k. Determine the ideal clustering(s), in the sense of Definition 3.5, within
Xk. In these, determine the winning clusters, their centres and central spines.

Output. A set of approximate central essential matrices.

Remark 5.5. The desired result of an instance of RanSaCp applied to genuine
image data would be a clustering in which there is one pronounced cluster C having
a central spine which is a path segment of length n >> 0. In this case, the central
elements of C would yield one single candidate essential matrix E ∈ (Z/2nZ)3×3

approximating the “true” 2-adic essential matrix for the particular stereo image
problem, while the other clusters could be considered as “outliers”. In general,
noise in the image will lead to less pronounced clusters and central spines with
branching. The former can lead to wrong estimates for E, and the latter means
that the approximated essential matrix can be less precise than in an ideal setting.

6. Conclusion

The p-adic classification algorithm LBGp is incorporated into a random sample
consensus algorithm via classification (RanSaCp) in order to efficiently solve the
five-point relative pose problem in stereo vision. The equations occurring in the
relative pose problem are derived from a 2-adic encoding of image coordinates,
decomposed and then solved with Hensel’s lifting method. The cluster number
is determined with a p-adic version of an intra-inter-validity measure originally
developped for k-means. The proposed solution for the essential matrix lies in the
centre of the most significant cluster.
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