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Abstract

Encoding the hierarchical structure of images by p-adic numbers allows
for image processing and computer vision methods motivated from arith-
metic physics. The p-adic Polyakov action leads to the p-adic diffusion
equation in low level vision. Hierarchical segmentation provides another
way of p-adic encoding. Then a topology on that finite set of p-adic num-
bers yields a hierarchy of topological models underlying the image. In the
case of chain complexes, the chain maps yield conditions for the existence
of a hierarchy, and these can be expressed in terms of p-adic integrals.
Such a chain complex hierarchy is a special case of a persistence complex
from computational topology, where it is used for computing topological
barcodes for shapes. The approach is motivated by the observation that
using p-adic numbers often leads to more efficient algorithms than their
real or complex counterparts.
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1 Introduction

Low level vision refers to the estimation of the scene underlying a given image.
Here, the dynamics in the geometry of a single image has become the main
concern. The usual method is to filter the image iteratively, which produces a
one-parameter family of images, starting with the original. This family is termed
scale space. The idea is that boundaries between objects should survive as long
as possible within the scale space, while homogeneous regions should become
flattened more rapidly. This process is described by a diffusion equation ∂tX =
DX, where D is a local differential operator acting on the image X = X(Σ, t)
with Σ the image domain. The variable t parametrises the different filtering
stages.

A very general framework for low level vision is provided by ideas from high-
energy physics. Namely, if Σ is viewed as the “worldsheet”, and if the target
space is allowed to be any Riemannian manifold, then X describes a “string”
whose dynamic is governed by the so-called Polyakov action. It provides a
measure on these maps X. This allowed [19] to unify many seemingly unrelated
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scale space methods and to provide new and improved ways of smoothing and
denoising images.

In computer vision, the features detection is one step towards an automated
vision system. Another step is to match features in two images in order to be
able to understand the 3D scene and dynamics. This can be done by estimating
the camera motion from two views, and methods from projective and algebraic
geometry enter the scene at an early stage, as for example in [20]. The beginning
of this present century witnesses the application of sophisticated methods from
computational commutative algebra in order to rephrase the equations into a
form from which solutions can be obtained with relative ease. The relation-
ship between the views is established by finding correspondences between point
pairs taken from both images. The fundamental matrix faithfully encodes the
geometric relationship between the two images. For normalised cameras, the
fundamental matrix coincides with the essential matrix. In general, the two
matrices are related through the camera calibration. Hence, if the calibration
is known, it is sufficient to estimate the essential matrix in order to solve the
relative pose problem. From a conceptional as well as a computational point of
view, it makes sense to use only few correspondences of image points in order
to estimate the essential matrix E. And different samples of n correspondences
lead to a set of candidate essential matrices from which an optimal choice can
be made. This method is called RANSAC: Random Sample Consensus.

Segmentation often aims at understanding single images. Here, the infor-
mation on the pixels are classified in order to find contiguous regions which are
sufficiently homogeneous. This can be used for object recognition or tracking
through image sequences. Another objective is that of constructing from im-
ages of some scene a model. Cartographic maps are often 2D-models, possibly
toghether with a height relief. Building or city models provide 3D information.
However, any finite or infinite dimensional model is conceivable, as e.g. time or
other attributes each can provide for an extra dimension in the model, or the
data can be transformed into some space of functions where the modelling is to
take place. Very often, a topological model is of interest in order to be able to
understand properties which are independent of the geometry, like connectiv-
ity, adjacency or the number of minimal paths, loops or holes. The hierarchical
approach leads to multi-representations, which in our case are hierarchical topo-
logical models. In computational topology, this has lead to the use of a family
of chain complexes connected by chain maps, called a persistence complex, in
order to derive an algorithm for computing persistence barcodes, a homological
invariant for shape data [8].

According to Murtagh [16], ultrametricity is pervasive in observational data,
and this offers computational advantages and a well understood basis for de-
velopping data processing tools originating in p-adic arithmetic. Consequently,
p-adic data encoding becomes necessary. In [3] it has been shown that the choice
of the prime number p is arbitrary, if one takes an unramified extension field K
of Qp of sufficient degree. The reason is that K has a Bruhat-Tits tree TK , a
(q+1)-regular infinite tree with q increasing with the degree of K, and at whose
boundary lie the points of K. The p-adic encoding simply identifies the data

2



with some boundary points of that tree, and this defines the tree of hierarchies
within the data. In other words p = 2 can be taken, which is usually the compu-
tationally most advantageous prime number. In particular, the p-adic Newton
iteration method, known in number theory as Hensel’s lemma, is most efficient
for p = 2.

In this article, we are interested in two aspects from a p-adic point of view:
low level vision and topological modelling from segmentation. Both aspects ask
for p-adically encoded images. This means that a p-adic (gray-scale) image is
defined as a function Σ → R, where the image manifold Σ is a p-adic space.
First, hierarchical image encoding methods based on interval subdivision are
reviewed. In our case, we can use p = 2 and represent image points in several
ways by pairs of binary expansions

a =
∞∑
n=0

ai2i

with coefficients ai equal to 0 or 1. These expansions can be infinite, theo-
retically. Practically, the finiteness of resolution means approximation through
truncation. The framework for this method is p-adic geometry which has been
applied in video segmentation and data analysis [2, 16, 3]. A hierarchical seg-
mentation in which segments at one level are subdivided in the next level pro-
vides another way of p-adic image encoding. This time the field of definition
can be an extension field of higher degree, depending on the maximal number
of children vertices in the tree.

We will review in Section 3 some natural 2-adic encodings which allow to
view gray-scale images as real-valued functions on p-adic spaces. This should
be understood as an invitation to develop image processing methods originating
in p-adic functional analysis.

In Section 4, we formulate a p-adic scale space equation from the Polyakov
action on the Bruhat-Tits tree. This action was introduced to p-adic string
theory by [22]. The result is a p-adic diffusion equation as the counterpart to
the diffusion equation obtained for scale spaces of images with real coordinates.

Section 5 describes how a topological structure on the finite p-adic code leads
to a hierarchy of compatible topological structures on each level. Important is
the condition that segments are open. Then, in the case of chain complexes,
conditions are derived for the system of boundary maps in order to obtain
cellular maps between the levels. These conditions are also given in terms of
p-adic integrals.

The article is preceeded by a short Section 2 on p-adic numbers.

2 p-adic numbers

Kurt Hensel’s important contribution to number theory was to view numbers
as analytic functions on some imagined “Riemann surface”. In this imaginary
situation, the “places” are given by the prime numbers p which play the role of
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a local coordinate1, and then the number n has “locally” a unique power series
expansion

n =
∞∑
ν=0

nνp
ν ,

which in the case of natural numbers n is in fact a finite expansion with co-
efficients nν ∈ {0, . . . , p− 1}. The p-adic metric is given by the length of the
common initial part:

|n−m|p = p−ν , (1)

if m = n0 + · · ·+ nν−1p
ν−1 +mνp

ν + . . . and mν 6= nν . This is an ultrametric,
i.e. the strict triangle inequality

|x+ y|p ≤ max
{
|x|p , |y|p

}
holds true. Allowing infinite expansions (1) means completion with respect to
the p-adic metric, and the completed space Zp of p-adic integers contains the
usual integers Z as a dense subset. Examples of negative numbers are

∞∑
ν=0

pν =
1

1− p
,

∞∑
ν=0

(p− 1)pν = −1

The primality of p guarantees that there are no zero-divisors in Zp, and the
field of fractions Qp can be formed which densely contains the rational numbers
Q. Just like in the function-theoretic case, the p-adic numbers thus correspond
to the meromorphic functions:

Qp =

{ ∞∑
ν=−N

xνp
ν | xν ∈ {0, . . . , p− 1}

}
and have a “Laurent series” expansion. Observe further that Zp is the p-adic
unit disk:

Zp =
{
x ∈ Qp | |x|p ≤ 1

}
,

and we have in Qp an ultrametric space on which calculus can be performed.
p-adic approximation is given by finite expansions: x = x0 + . . . xn−1p

n−1 +
higher order terms. That cut-off can be written by a congruence

x ≡ x0 + · · ·+ xn−1p
n−1 mod pn, (2)

from wich it follows that the p-adic expansion of x is given by an infinite sequence
of congruences (2) with n = 1, 2, 3, . . . . And indeed,∣∣∣∣∣x−

n−1∑
ν=0

xνp
ν

∣∣∣∣∣
p

≤ p−n,

1In fact, this dream became true thanks to Grothendieck’s concept of scheme: The “Rie-
mann surface” is the affine scheme SpecZ, the space whose points are the prime ideals pZ for
p = 0 or a prime number. Cf. e.g. [12].
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we have convergence of these finite expansions to x for n→∞.
The ultrametric (1) reveals the tree-like structure of Qp. In fact, by taking

as vertices the disks, and as edges the non-trivial inclusions of disks A ⊂ B
not having any other disk C strictly in between: A ⊂ C ⊂ B, one obtains the
Bruhat-Tits tree Tp. It is a p+1-regular infinite tree, and its boundary is in one-
one correspondence with P1(Qp) = Qp∪{∞}. Notice that the local structure of
Tp means that the edges attached to each vertex is in one-one correspondence
with P1(Fp), where Fp is the residue field Zp/pZp of Qp, the finite field with p
elements. And indeed, the children of a vertex (= disk B) correspond uniquely
to the residue classes modulo p of the unit disk, after translating B into the
unit disk and rescaling to B′ = Zp.

Let us remark that Qp is endowed with a Haar measure dx such that∫
Zp

dx = 1,

i.e. the unit disk has volume 1. In particular, disks have volume equal to their
diameter. An important example integral is∫

Zp

dx |x|sp =
∞∑
ν=0

(p− 1)p−νsp−(ν+1) =
p− 1
p
· 1

1− p−s−1

for Re(s) > 1. This follows from integrating the locally constant |x|sp on spheres
|x|p = p−ν which consist of p− 1 balls of volume p−ν−1, and then summing up
the geometric series.

Finite field extensions K of Qp play an important role in p-adic theories.
They have a Bruhat-Tits tree TK which is q+1-regular, where q is the cardinality
of the residue field Fpf of K. There is again a Haar measure dx on K. For
n = dimQp(K), there is the relation n = ef . If e = 1, then K is unramified,
otherwise ramified over Qp. The unramified case has been used in [4] in the
context of classification. This allows for dendrograms with arbitrary branching
without having to change the prime number p. In particular p = 2 is sufficient,
and this small prime number yields the most efficient algorithms in general.
The ramified field extensions have been of importance in string theory. Ghoshal
[10] has used them for giving a meaning to the so-called “p → 1 limit” by the
sequence of lattice discretisations of the string world sheet for each e ≥ 1. This,
in turn, gave a physical meaning to p-adic string theory.

An Introduction to p-adic numbers can be found e.g. in [11]. A brief review
of applications of p-adic numbers in physics and other sciences is presented in
[9].

3 p-adic encoding of images

A 2-adic encoding of square 2N × 2N -images can be obtained by a hierarchical
subdivision as in Fig. 1. Essentially, there are two approaches for the encoding.
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20 × 20 21 × 21 22 × 22 . . . 2N × 2N

Figure 1: Hierarchical subdivision of an image

In the bottom-up encoding, the squares at highest resolution are assigned to level
N , with decreasing level at higher hierarchy, level 0 representing the full image
cluster. The encoding scheme for the x-coordinate is to traverse a path from
bottom to top, and collect a coefficient aν = 0 for each right turn, and aν = 1
for left turns. This yields the expansion

x =
N∑
ν=0

aν2−ν .

Fig. 2 (left) exemplifies this with

x1 = 0, x2 = 2−1, x3 = 2−2, x4 = 2−2 + 2−1.

The intensities (gray values) on the image grid can be viewed as locally constant
functions f : Qp → R, since vertices in the dendrogram at level ν can be viewed
as p-adic disks of radius pν . With the bottom-up encoding the functions are
constant on all translates of the unit diskZp, and methods from p-adic functional
analysis are ready for application. The functions which are constant on the sets
x+Zp are in one-one correspondence with functions on the co-set space Qp/Zp.
Different bottom-up encoding approaches have been employed by Murtagh in
classification [17]. The following section outlines an application to low level
vision.

2− OO 0 �//oo 1 OO

1− OO 0 //oo 1 OO OO 0 //oo 1 OO

0−
x1 x2 x3 x4

0−
��

oo 0 � 1 //

��1−
��

oo 0 1 //

�� ��

oo 0 1 //

��2−
x1 x2 x3 x4

Figure 2: Left: bottom-up encoding, right: top-down encoding of a dendrogram

The top-down encoding reverses the order of bottom-up, and expansion is in
positive powers of 2. This yields 2-adic integers for image coordinates, which
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turns out useful in [5], where the Hensel lemma can be applied. In Fig. 2 (right)
one obtains

x1 = 0, x2 = 21, x3 = 22, x4 = 21 + 22.

In fact, this is the way we have constructed the Bruhat-Tits tree Tp in the
previous section. A formal definition of the top-down encoding is given in [5].
Image-based p-adic encodings can be found in [13, 14].

4 Scale space through Polyakov action

A general framework for low level vision is proposed by Sochen et al. [19]. They
consider low level vision as an input-output process given by a so-called scale
space equation

∂tX = DX,

where D is a local differential operator acting on the output vector X(t) on the
image, viewed as a manifold (Σ, g) with some metric g. In order to obtain a
very general description, they take as X an embedding map

X : (Σ, g)→ (M,h)

into another surface (M,h). The Polyakov action is given by the functional

S[X, g, h] =
∫
Σ

dmσ
√

det g gµν∂µXi∂νX
jhij , (3)

where m = dim Σ, g−1 = (gµν), and µ, ν = 1, . . . ,dim Σ, i, j = 1, . . . ,dimM is
summed over (Einstein’s summation convention). And

∂µX
i :=

∂Xi(σ1, σ2)
∂σµ

is the partial derivative. Polyakov writes down the action (3) in the case of a
flat background space, i.e. hij = δij [18].

The Euler-Lagrange equations yield

− 1
2
√

det g
hi`

δS

δX`
=

1√
det g

∂µ

(√
deg g gµν∂νXi

)
+ Γijk∂µX

j∂νX
kgµν , (4)

where Γijk are the coefficients of the Levi-Cività connection. Sochen et al. pro-
pose to use the equation

∂tX
i = − 1

2
√

det g
hi`

δS

δX`
=: ∆gX

`

as the scale space equation [19]. The operator ∆g is the Beltrami operator, a
natural generalisation of the Laplace operator to manifolds.
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For example, the gray-scale image induces the embedding

X : Σ→ R3, σ 7→ (x, y, I),

and the metrics are hij = δij , and gµν = δµν . Then

S[X, g, h] =
∫
Σ

d2σ
(
|∇x|2 + |∇y|2 + |∇I|2

)
In the case that x = σ1, y = σ2, the usual heat operator acting on I is obtained
by minimising the action S with respect to I. In other words, the usual scale
space equation

∂tI = ∆I,

is obtained from this action, as can be derived from the Euler-Lagrange equation
(4).

In the p-adic case, we will not be quite as general as in the Archimedean case
before. Our starting point is p-adic diffusion. This can be described as a sym-
metric jump process on Qp/Zp, with the transition probability Pxy depending
only on their p-adic distance:

Pxy = eρ(|x−y|p).

The equation describing the evolution of probabilities is then given by

d

dt
f(x, t) =

∫
Qp

(f(y, t)− f(x, t))Pxy dy, (5)

where the right-hand side is a non-local pseudo-differential operator. Equation
(5) has been successfully applied to replica symmetry breaking by Avetisov et
al. [1].

Assume that the integral kernel is of the form

ρ(|x|p) = Cp vp(x)(1 + α) ln p

with α > 0, and |x|p = p−vp(x). This corresponds to activation barriers for the
jump process having linear growth with respect to p-adic distance. In this case,
equation (5) describes p-adic Brownian motion. For − logCp = 1−p−α−1

1−pα =:
Γp(−α), the role of the heat operator is played by the Vladimirov operator

Dαf(x, t) =
1

Γp(−α)

∫
Qp

f(x)− f(y)
|x− y|1+α

p

dy, (6)

where Γp(α) is known as the the p-adic gamma function. We propose that the
diffusion equation

d

dt
f(x, t) = −Dαf(x, t) (7)
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can be viewed as the p-adic analogue of a scale-space equation, where t plays
the role of the scaling parameter.

The Vladimirov operator is usually defined on L2-functions by

Dα : f 7→ FM|x|αpF
−1(f),

where α 6= −1, Mλ means multiplication with λ, and F is the Fourier transform.
For α > 0 it has the form (6) [21].

Let now Σ ⊆ Q2
p be a p-adic image manifold. Via the linear isomorphism

Q2
p
∼= K for the unramified extension field K = Qp(θ) over Qp of degree two,

we will derive a one-dimensional description of p-adic scale space.
The real embedding of image space Σ can be given by

X : Σ→ R3, σ = x+ yθ 7→ (M(x),M(y), I(σ)),

where

M : Qp \
{
a

pn
| a ∈ Z≥1, n ∈ Z≥0

}
→ R,

∑
xν 7→

∑
xνp
−ν

is the (inverse) Monna map, provided the coordinates of all σ ∈ Σ lie in the
domain of M . We would like to develop an analogue of (3) in this situation, but
contend ourselves with the Polyakov action on the Bruhat-Tits tree TK from
[22]:

STK [Xi] =
βK
2

∑
e∈EK

(
∂eX

i
)2

with ∂eX
i = Xi(t(e))−Xi(o(e)), and a p-adic “string tension” constant βK =

1/ ln q, where q = pf is the cardinality of the residue field Fq of the unramified
p-adic extension field K. By applying his method of integrating out the interior
of TK , one obtains

SK [Xi] =
q(q − 1)βK

4(q + 1)

∫
Σ

dξ dξ′
(
Xi(ξ)−Xi(ξ′)

)2
|ξ − ξ′|2K

,

just as in the case q = p.
The variational derivative is

δSK [Xi]
δXi

(ξ) = DKXi(ξ) =
q(q − 1)βK

2(q + 1)

∫
Σ

dξ′
Xi(ξ)−Xi(ξ′)
|ξ − ξ′|2K

,

so that we propose the p-adic scale space equation

∂tX =
δSK [X]
δX

which yields in our case ∂tX = DKX, the p-adic diffusion.
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For complex-valued images, we propose

i∂tΨ = ∆gΨ, resp. i∂tΨ = DKΨ

as the scale space equations in the archimedean, resp. non-archimedean case.
This allows to view phase-intensity images, as provided e.g. by range-image
cameras or other active sensors, as wave-functions.

Notice that in the p-adic situation, the coordinates as well as the scaling
parameter t are p-adic, which poses no problems in applications, as t then runs
through a finite set. More on p-adic pseudo-differential equations, functional
analyis and mathematical physics can be found in [21], an overview of applica-
tions to string theory is given by Brekke and Freund [7].

5 Hierarchical topological models

The purpose of image segmentation is to partition the image into homogeneous
segments. From these segments one can construct a model of the observed
scene, e.g. by labelling the individual segments as being part of some, possibly
categorised, entity, such as ’building’, ’person’ or ’background’. Important for
understanding images are their topological models which can be derived from
segmentations. For example, the adjacency graph is often used in cartogra-
phy. Here, the vertices are given by the segments, and an edge means that
two segments are adjacent. Other topological types are also used, such as pla-
nar graphs which can model the borders between ’areas’ as ’lines’, and such
’lines’ border in ’points’. In principle, any kind of finite topological space is
conceivable as a topological model, possibly with further structure. Recently,
topological databases have been introduced to the modelling of geographic or
building information, together with relational chain complexes as the database
notion of topological spaces and chain complexes, respectively [6].

A hierarchy of segmentations means that segments can be further segmented,
resulting in a family of segmentations at various scales. Here, a segmentation
at scale t is refined to one at the next scale t+ 1 in such a way that each parent
segments (from scale t) is further partitioned into segments, and each segment
at scale t + 1 has ’kin segments’ such that the union of all ’kins’ is a ’parent’
segment.

A corresponding topological model is then given by a tree of graphs, planar
graphs or other topological spaces (or databases). The hierarchy from bottom to
top induces continuous maps between those models at different scales. Through
p-adic encoding of the bottom segmentation level (i.e. in some p-adic field K)
one arrives at topologies on finite sets X of p-adic numbers. The hierarchical tree
is thus embedded into the Bruhat-Tits tree TK by taking the minimal subtree
of TK whose boundary contains X. Such embedded p-adic dendrograms were
introduced to data analysis in [3], and are well suited for hierarchical data. In
case X ⊆ OK , where OK is the ring of integers in K, the topological model of
X at level n can be extracted from X modulo mn

K , where mK is the maximal
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ideal of OK . If the bottom-up encoding is used, the methods from Section 4
can be applied to segmentation hierarchies.

Viewing the case of chain complexes more closely, let C = C(X) be a (ho-
mological) chain complex over a commutative unitary ring R with a finite basis
X ⊆ OK2, where X = X0 t · · · tXm is the partition into sets Xi of ’cells’ x of
’dimension’ i = dim(x). Let

∂ : Ci(X) = RXi → Ci−1(X) = RXi−1

be the boundary operator, where

RY :=
⊕
y∈Y

Ry

is the free R-module over the set Y . The set at level ν is defined as the set of
disks

X(ν) :=
{
x(ν) := x+mν

K | x ∈ X
}

with grading given by

dim(x(ν)) := max {i | y ∈ Xi, y ≡ x mod mν
K},

a well defined notion. For each level ν there is the contraction map

πν : X 7→ X(ν), x 7→ x(ν),

for which we require that any fibre π−1
ν (x(ν)) is open in the n-skeleton of

C(X), where n = dim(x(ν)). By viewing the segment x(ν) as a chain of its
n-dimensional constituents in X (there are some choices for coefficients!), this
induces from πν the linear map ψν : Cν(X) = RX(ν) → C(X) which maps
n-chains to n-chains.

The requirement for the boundary map at level ν is

∂(ν)ψν = ψν∂,

in other words, the cellularity condition for ψν . Notice that the directions of
arrows ψν and πν are reverse. As a result, we have obtained a hierarchical
family of chain complexes ’modulo mν

K ’ from a given ’p-adic’ chain complex.
The same construction works for cohomological chain complexes as well.

However, the existence of ∂(ν) is not guaranteed. If this is the case, we speak
of integrability with respect to the linear map ψν .

Definition 1. The boundary operator ∂ is called integrable with respect to the
linear map ψν (or for short: ψν-integrable), if there exists a boundary operator
∂(ν) on C(X(ν)) such that ψν is a cellular map of chain complexes. If the
boundary operator ∂ is ψν-integrable for all ν, then the collection ψ = (ψν) is
called a hierarchical chain complex for X, and ∂ is called ψ-integrable.

2The top-down encoding is chosen for convenience only. Bottom-up works equally well.
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The question is now, which conditions the linear maps in ψ must fulfill in
order for ∂ to be ψ-integrable. Here, the map πν : X → X(ν) plays an important
role. In general, the fibre π−1

ν (x) contains also cells of dimension lower than
n = dim(x). These are, by assumption, contained in the interior of x. Assume
that c is such an interior cell, and that dim(c) = n− 1. Being in the interior of
x means that c does not appear in the boundary ∂ψν(x) in its representation
as a linear combination of n− 1-cells.

For a more systematic approach, we introduce some notation. The unknown
boundary coefficients of x under ∂(ν) will be written as (x : c)ν , where c runs
through the cells of X(ν):

∂(ν) x =
∑
c

(x : c)ν c.

The coefficients of a chain d ∈ Cn(X) are denoted as 〈d | y〉, where y runs
through the cells of X. Hence, we have the expression

ψν(x) =
∑
y

〈ψν(x) | y〉 y =
∑

y∈π−1
ν (x)

〈ψν(x) | y〉 y. (8)

And for a cell y of X, the expression (y : b) denotes the coefficient of the given
boundary operator ∂, which yields:

∂y =
∑
b

(y : b) b.

From the chain map definition

∂ψν(x) = ψν∂
(ν)(x) (9)

we obtain for the left hand side:

∂ψν(x) = ∂

 ∑
y∈π−1

ν (x)

〈ψν(x) | y〉 y

 =
∑

y∈π−1
ν (x)

〈ψν(x) | y〉
∑
b

(y : b) b,

where the linearity of ∂ was used. Changing the summation order in the last
expression yields:

∂ψν(x) =
∑
b

 ∑
y∈π−1

ν (x)

〈ψν(x) | y〉(y : b)

 b. (10)

For the right hand side of (9), we obtain

ψν∂
(ν)(x) = ψν

(∑
c

(x : c)ν c

)
=
∑
c

(x : c)
∑

b∈π−1
ν (c)

〈ψν(c) | b〉 b

=
∑
b

(x : πν(b))〈ψν(πν(b)) | b〉 b (11)

The result is:
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Theorem 2. The boundary operator ∂ is ψν-integrable, if and only if for all
x, c ∈ X(ν) the equations

(x : c)ν〈ψν(c) | b〉 =
∑

y∈π−1
ν (x)

〈ψν(x) | y〉(y : b) (12)

have a common solution (x : c)ν for all b having the same image πν(b) = c.

Notice that, due to (8), the right hand side of (12) can be also written as a
summation accross all y ∈ X.

The following corollary is an algebraic way of saying that any n−1-dimensional
part of an n-cell x lies in the interior of x.

Corollary 3. Assume that there is some e ∈ π−1
ν (x) with dim(e) = n − 1 and

x ∈ Xν with dim(x) = n. If ∂ is ψν-integrable, then 〈∂ψν(x) | e〉 = 0.

Proof. The statement is valid, because

〈∂ψν(x) | e〉 =
∑
b

 ∑
y∈π−1

ν

〈ψν(x) | y〉(y : b)

 〈b | e〉 (13)

=
∑

y∈π−1
ν (x)

〈ψν(x) | y〉(y : e) (14)

= (x : x)〈ψν(x) | e〉 (15)
= 0 (16)

The first equality (13) follows from (10). The next, (14), follows from the fact
that

〈b | e〉 =

{
1, if b = e

0, otherwise.

Equality (15) follows from Theorem 2. The last equality (16) follows, because
of (x : x) = 0.

So far, we have not used the assumption that the tree underlying ψ is p-adic,
i.e. embedded into the Bruhat-Tits tree TK for some p-adic field K. The vertices
all correspond to some p-adic disks in K, and the labels coming from ψ can be
viewed as locally constant integer valued functions. In other words, the X(ν)

each are sets of disjoint disks, and the boundary operators ∂(ν) define functions
on K ×K:

Dν =
∑

(b,c)∈X(ν)×X(ν)

(b : c)ν
µ(c) · µ(b)

1b×c,

where 1A denots the indicator of a set A, and µ(d) the diameter of disk d. We
call Dν the p-adic boundary function associated to ∂(ν). This yields

(b : c)ν =
∫
b

∫
c

Dν(x, y) dxdy,

13



as can be readily verified. The maps ψν define functions on K:

P ν(x, y) =
∑

(b,c)∈X(ν)×X(ν)

〈ψν(b) | c〉
µ(b)µ(c)

1b×c,

and these yield

〈ψν(b) | c〉 =
∫
b

∫
c

P ν(x, y) dxdy,

just like above. The p-adic formulation of Theorem 2 can now be stated:

Theorem 4. ∂ is ψν-integrable if and only if for all c ∈ X(ν)∫
c

Dν(x, y) dy
∫
c

P ν(x, y) dy =
∫
K

P ν(x, y)D(x, y) dy,

where D = Dµ is the p-adic boundary function corresponding to the boundary
operator at the highest level of resolution.

Proof. Assume that x ∈ A, z ∈ b with A, b ∈ X(ν). Then the left hand side
equals

(A : c)ν 〈ψν(c) | b〉
µ(A)µ(b)

,

and the right hand side: ∑
B∈Xν

〈ψν(A) | B〉 (B : b)
µ(A)µ(b)

,

and the assertion is a consequence of Theorem 2.

Corollary 5. Assume that there exists e ∈ π−1
ν (A) for some A ∈ X(ν) with

dim e = dimA − 1. If ∂ is ψν-integrable, then for all x ∈ A and z ∈ e it holds
true that ∫

K

P ν(x, y)D(y, z) dy = 0.

Proof. From Theorem 4 it follows that∫
K

P ν(x, y)D(x, y), dy =
∫
A

Dν(x, y) dy
∫
A

P ν(y, z) dy = (A : A)ν 〈ψν(A) | e〉 = 0,

which proves the assertion.

In analogy to before, Corollary 5 is a p-adic way of saying that e is an ’inner’
cell of A.

Notice that, in the integrable case, ψ is a new instance of a persistence chain
complex associated to the hierarchical data X, allowing for the computation
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of a topological barcode for X which represents the ’lifetimes’ of homology
generators along the level ν of the hierarchy [8]. In our case, with any kind
of p-adic encoding of X, we call ψ, as well as the family (P ν , Dν), a p-adic
persistence chain complex or a persistence chain complex over K, if we want to
emphasise the p-adic field of definition.

6 Concluding remarks

Viewing the hierarchical world as ultrametric leads to the consideration of p-adic
methods for detecting and processing hierarchies. For this, p-adic data encod-
ing becomes indispensible. This applied to images yields encodings of special
quadtrees, known in image processing. The bottom-up method introduced here
opens the way for methods from p-adic mathematical physics, whereas the top-
down method renders p-adic integers as image coordinates. The former enabled
to derive a p-adic scale space equation from the Polyakov action on the Bruhat-
Tits tree. And the latter recently allowed the use of Hensel’s lemma to the
equations arising in the problem of finding the essential matrix from five point-
correspondences in stereo vision [5].

Applied to deriving topological models from segmentation, we showed how
to derive a hierarchy of topologies (which cartographers call generalisation or
multi-representation) from a given topology on the p-adic code. This has been
seen to apply to chain complexes as well, where the existence of the boundary
operators on all levels depends on an integrability condition coming from the
chain map rule. This condition has a formulation with p-adic integrals. Hence,
the boundary operators can be computed from the highest level of resolution by
means of p-adic integration whenever the corresponding inter-level chain map
is injective.

We note that an axiomatic p-adic scale-space theory, from which feature
detectors and descriptors can be derived, has yet to be developped. In any
case, the results show that p-adic physics can play an important role in the
understanding of images.
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