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Abstract. Exact bounds for the positions of the branch points for cyclic
coverings of the p-adic projective line by Mumford curves are calculated in
two ways. Firstly, by using Fumiharu Kato’s ∗-trees, and secondly by giving
explicit matrix representations of the Schottky groups corresponding to the
Mumford curves above the projective line through combinatorial group theory.

1. Introduction

Cyclic covers of the projective line defined over a field K of characteristic zero
have been thoroughly studied. Such covers ϕ : X → P1 correspond to equations of
the form

yn = f(x),

where f(x) ∈ K[x] is a polynomial. The zeros of f(x) in a suitable finite extension
field of K are the branch points of ϕ. In the case that K is a p-adic field, it is known
that not every equation as above corresponds to a cover by a Mumford curve. And
even if f(x) is of the right kind, one finds strong restrictions on the position of
the branch points for ϕ to be a Mumford cover of P1. This was first observed in
the case n = 2 and X an elliptic curve: X is a Tate curve, if and only if the four
branch points do not form an equilateral quadrangle in P1. To be more precise, by
a projective automorphism one can take the branch locus to be {0, 1,∞, λ} with
|λ| = 1. Then for residue characteristic not equal to two, the Legendre equation

y2 = x(x− 1)(x− λ)

is the equation of a Tate curve, if and only if |λ− 1| < 1.
If ϕ is a hyperelliptic cover, then the restriction found in [16] is that the branch

points come in pairs of points closer to one another than to the other branch points.
The distance is measured by rational affinoid subsets of P1.

The most elegant way of obtaining bounds for relative positions of the branch
points of any finite Galois cover ϕ of P1 is through the ∗-tree T ∗

N for the discrete

finitely generated group N giving rise to the orbifold uniformisation of Ω
N
−→ P1

factoring through ϕ and having the same branch locus and ramification orders as
ϕ. Distances within T ∗

N translate into distances between branch points. The group
N sits in an exact sequence

1 → Γ → N → G→ 1,

where G is the Galois group of ϕ and Γ is a free group whose rank is the genus of

X . The corresponding uniformisation Ω
Γ

−→ X is called a Schottky uniformisation,
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and Γ a Schottky group. This approach is pursued in the present article for cyclic
covers.

The ∗-tree T ∗
N was developped by Fumiharu Kato in order to obtain deeper

insight into the structure of p-adic discrete groups and has many applications in the
study of automorphisms of Mumford curves, especially in positive characteristic,
e.g. [5]. Extensive use of the ∗-tree is being made in the classification of p-adic
triangle groups [3].

In the present article, we focus on all possible cyclic covers of P1 with twofold
aim.

Firstly, we exhibit detailed calculations of the exact bound for |λ−1| characteris-
ing the Mumford covers among four-point cyclic Harbater-Mumford covers ϕ whose
branch locus is {0, 1,∞, λ} and |λ| = 1, and give the exact sizes of the separating
annuli for covers with more branch points.

Secondly, explicit hyperbolic generators for Γ are given from which again one
can calculate the characteristic bound from above by Ford’s method of isometric
circles and some combinatorial group theory, and thus gains an explicit parametric
description of the Schottky uniformisation of the Mumford curve. For covers of
prime degree, we recover the generators of [17].

We remark, however, that here we are only dealing with the positions of branch
points up to “first order”, meaning that our methods do not reveal the precise
relationship between the discrete representation Γ → PGL2(K) and the branch
points of the corresponding Mumford cover ϕ, which would require the study of
automorphic forms on the Mumford curves. Geometrically speaking, we can make
explicit the geometry of T ∗

N without, however, considering the precise embeddings
of T ∗

N into the Bruhat-Tits tree for PGL2(K).

A nice desideratum would be the explicit fuchsian differential equation corre-
sponding to the cyclic cover ϕ : X → P1.

This article refines methods and results from the author’s dissertation [1].

2. Generalities

Let Qp be the field of p-adic numbers. We assume that K is a finite extension
field of Qp, large enough that all branch points of all covers X → P1

K in the article
are K-rational.

TK denotes the Bruhat-Tits tree for PGL2(K), the automorphism group of the
projective line P1

K . We will use the well known fact that the ends of TK correspond
to the K-rational points of the projective line P1.

Let N ⊆ PGL2(K) be a finitely generated discrete subgroup. Following [13],
the tree T ∗

N is defined to be the smallest subtree of TK whose ends correspond to
the fixed points of all non-trivial elements of N . The group N acts on T ∗

N without
inversion, and the quotient graph T ∗

N = T ∗
N/N is a graph of finite groups with

finitely many ends corresponding to the branch points of the quotient cover

ΩN
N
−→ XN .

The open analytic space ΩN ⊆ P1 is defined as the complement of the closure of the
limit points of N , and the quotient space XN is the analytification of a non-singular
projective algebraic curve over K. In fact, XN is a Mumford curve.
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An important example of T ∗
N is, when N = 〈γ〉 ∼= Cm is a finite cyclic group of

order m > 1. Then M(γ) := T ∗
N is simply a straight line stabilised by γ.

Definition 2.1. Let γ ∈ PGL2(K) be of finite positive order. Then M(γ) is called
the mirror of γ.

Lemma 2.2. There is a natural bijection between the sets:

{maximal finite cyclic subgroups of N}
∼
−→ {mirrors of N}

Proof. The natural map takes a maximal cyclic group to the mirror of a generator,
which is clearly well defined. It is also clear that 〈γ〉 ⊆ 〈δ〉 implies M(γ) = M(δ).
Therefore, the map is surjective.

Let now 〈γ〉, 〈δ〉 ⊆ N be such that the mirrors M := M(γ) = M(δ) coincide.
Then G := 〈γ, δ〉 ⊆ N is finite, as any word in γ and δ fixes the mirror. This means

that M = T ∗
G , implying that G is cyclic, as the corresponding cover P1 G

−→ P1 has
exactly two branch points [13, Proposition 5.6.2]. �

It is well known that, if K ′/K is a finite field extension, then a subdivision of
TK embeds into TK′ .

Convention 2.3. Let T be a subtree of TK . When we speak of a point x on an
edge e = (v, w) of T , we mean that after some finite extension K ′/K, x is a vertex
on the (open) path (v, w) in the tree T ′ obtained by restricting the subdivision and
embedding process from above.

3. Mumford curves and discrete groups

3.1. The tree T ∗
Γ for a free product of cyclic groups. Let Γ = Cm ∗ Cn be

the free product of two cyclic groups Cm and Cn. We will calculate the tree T ∗
Γ

for all possible values of m = pra and n = psb (where (a, p) = (b, p) = 1). In fact,
the shape of the quotient tree T ∗

Γ is known in [13, §8.1] (and implicitly known in
[9, §11]) and is given in Figure 1.

Our special interest lies in the exact distances within the tree, in particular the
lengths of the paths [x, v] and [w, y]. These can be extracted from the indications
at the end of [13, §8.1] or the proof of [2, Proposition 3.1]. Here, we give a detailed
exposition of the calculations.
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Figure 1. The quotient ∗-tree for a free product of cyclic groups.

Proposition 3.1. Let Γ ∼= Cm∗Cn be a discrete subgroup of PGL2(K). If (m, p) =
(n, p) = 1, then T ∗

Γ is as in Figure 1 with dist(x, v) = dist(w, y) = 0.

Proof. [13, §8.1]. �



4 PATRICK ERIK BRADLEY

Proposition 3.2. Let Γ1 ⊆ Γ2 be discrete subgroups of PGL2(K), where as abstract
groups Γ1

∼= Cp ∗ Cp and Γ2
∼= Cpa ∗ Cpb with a, b ≥ 1. Then:

(1) There is a subdivision T ∗
1 of T ∗

Γ1
which is a subtree of T ∗

Γ2
.

(2) The quotient graphs T ∗
Γ1

and T ∗
Γ2

are trees with shape of that in Figure 1.
(3) For a primitive p-th root ζp of unity,

dist(x, v) = dist(w, y) = v(ζp − 1)

in both trees T ∗
Γ1

and T ∗
Γ2

.

Proof. Since Γ2 is a free product of non-trivial cyclic groups, T ∗
Γ2

contains an
edge e = (v, w) with stabilisers Γ2,e = 1 and Γ2,v , Γ2,w both non-trivial. The
group Γ2,v = 〈γ〉 contains an element of order p, as otherwise v would lie on the
mirror M(γ) which in turn corresponds to some maximal finite cyclic subgroup of
Γ2 (Lemma 2.2). But such subgroups necessarily contain elements of order p, a
contradiction.

Let 1 6= γ ∈ Γ2,v. Then v does not lie on the mirror M(γ), as otherwise any
point on e close enough to v would be stabilised by γ. As this holds for all γ 6= 1 in
Γ2,v, we conclude that Γ2,v

∼= Cp. Therefore, the vertex v has to M(γ) the positive
distance v(ζp − 1) [11, Lemma 3]. Analogously, Γ2,w〈δ〉 ∼= Cp and the distance
between w and M(δ) is also v(ζp − 1).

Taking e ⊆ T ∗
Γ1

, we have M(γ) ∪M(δ) ⊆ T ∗
Γ1

. From this, all three assertions
follow. �

Proposition 3.3. Let Γ ∼= Cpm ∗ Cn with (n, p) = 1 be a discrete subgroup of
PGL2(K). Then T ∗

Γ is as in Figure 1 with dist(w, y) = 0.

Proof. The proof is similar to that of Proposition 3.2. �

Remark 3.4. The figure in [2, Fig. 1] is slightly erroneous. It should have two
segments stabilised by Cpn

Cpn Cpn

•
Cpn

•

which are not contained in the two mirrors. This can be seen by setting a = b = 1,
and r = s = n in Figure 1.

3.1.1. Some examples. Figures 2, 3 and 4 show portions of some T ∗
Γ for p = 2,

where dist(x, v) 6= 0 (notation as in Figure 1). We remark, however, that the most
beautiful ∗-trees are those for the finite groups, when p = 2, 3, 5 (to appear in [3]),
some of which are illustrated already in [4].

2

2 2

22 2

2 2
1

1

1

Figure 2. The tree T ∗
Γ for Γ = C2 ∗ C2 and p = 2.

The figures are depicted in such a way that
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Figure 3. The tree T ∗
Γ for Γ = C2 ∗ C6 and p = 2.
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Figure 4. The tree T ∗
Γ for Γ = C4 ∗ C4 and p = 2.

• a curved line with arrow heads represents the mirror of a transformation
whose order is written at both ends;

• an unbroken line segment denotes an edge lying on a geodesic line on which
a hyperbolic element acts through translation;

• a dotted line segment means a non-trivially stabilised edge which does not
lie on a mirror (the order of whose stabiliser is the lower of the two numbers
at its extremities);

• a number is the order of the stabiliser of the corresponding vertex or edge.

3.1.2. The positions of ends. Let a = (a0 : a1), b = (b0 : b1), c = (c0 : c1) and
d = (d0 : d1) be four pairwise distinct K-rational points of P1

K . The arrangement
of two straight lines (a, b) and (c, d) in TK can be calculated using the crossratio

R(a, b; c, d) =
(a1c0 − a0c1)(b1d0 − b0d1)

(a0b1 − a1b0)(c0d1 − c1d0)
.

Proposition 3.5. Let a, b, c, d ∈ P1
K be as above. Then:

(1) If |v(R(a, b; c, d))| = |v(R(b, a; c, d))| = 0, then (a, b) and (c, d) intersect at
exactly one vertex.

(2) If |v(R(a, b; c, d))| = |v(R(b, a; c, d))| 6= 0, then (a, b) and (c, d) are disjoint
with the distance |v(R(a, b; c, d))|.

(3) If |v(R(a, b; c, d))| 6= |v(R(b, a; c, d))|, then the intersection of (a, b) and
(c, d) is the path [v(a, b, c), v(b, c, d)] of length

max{|v(R(a, b; c, d))|, |v(R(b, a; c, d))|}.

Here, v(a, b, c) denotes the unique vertex in TK determined by the points a, b, c ∈
P1
K viewed as ends in TK .
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Proof. [13, Proposition 3.5.1]. �

Definition 3.6. Let ζ be a primitive m-th root of unity. Then εm and αp(m,n)
denote the numbers

εm :=

{

1, if p | m

0, otherwise

αp(m,n) := |1 − ζp|
εm+εn .

T ∗
Γ has four ends which can be taken as 0,∞ going out of x and 1, λ emanating

from y with |λ| = 1.

Theorem 3.7. Let Γ ∼= Cm ∗Cn be a discrete subgroup of PGL2(K) and 0,∞; 1, λ
the ends of T ∗

Γ as above. Then:

|λ− 1| < αp(m,n),

and, conversely, for all such λ ∈ K there is an embedding Cm ∗Cn → PGL2(K) as
a discrete subgroup having such a ∗-tree.

Proof. Let Γ be as stated. Then we have, by Propositions 3.1, 3.2 and 3.3,

dist(x, y) = dist(x, v) + dist(v, w) + dist(w, y)

>











2 · v(ζp − 1), if p | m and p | n,

v(ζp − 1), if p | m and (p, n) = 1,

0, otherwise,

as d(v, w) is strictly positive. Thus, by Proposition 3.5, it holds true that

|v(λ− 1)| = dist(x, y),

as |v(R(0,∞; 1, λ))| = |v(R(∞, 0; 1, λ))| = |v(λ − 1)| 6= 0. From this, the assertion
follows.

For the converse implication, one has to check that the ∗-tree from Figure 1 is
realisable for any value of dist(v, w) > 0 in |v(K×)|. This easy task is left to the
reader. �

Example 3.8. For Γ ∼= C2 ∗ C2, we obtain the realisability for T ∗
Γ if and only if

|λ − 1| < |2|2. In this case, the projective line is covered by a Tate elliptic curve.
By the formula for the j-invariant of elliptic curves [8, Chapter IV.4],

j = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
,

this is equivalent to |j| > |2|4.

3.2. Cyclic Mumford covers. The only cyclic covers X
m
−→ P1 allowing X to be

a Mumford curve are known to be those corresponding to an equation of the form

ym =

r
∏

i=1

(x − λi1)
ai(x− λi2)

m−ai .(1)

The branch points of the cover are the zeros of the polynomial on the right hand side.
After some projective K-linear transformation, the first four terms can be taken
as xa1 , 1, (x− 1)a2 , (x− λ)m−a2 , corresponding to the branch points 0,∞; 1, λ. We
will call a cover whose equation is of the form (1), a cover of HM-type.
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Definition 3.9. By an m-cover of type (e1, . . . , er) we mean a cyclic cover ϕ : X →
P1 of degree m of HM-type ramified above the points (λ11, λ12; . . . ;λr1, λr2) with
(λ11, λ12;λ21, λ22) = (0,∞; 1, λ) and |λ| = 1, and such that the ramification index
above each λij is ei > 0.

A cyclic cover X → P1 is called a Mumford cover or of Mumford type, if X is
a Mumford curve.

Definition 3.10. The statement

The bound holds for m.

means saying that an m-cover of type (d, e) is a Mumford cover if and only if
|λ− 1| < αp(m,n).

Theorem 3.11. The bound holds for m.

Proof. This, of course, is an immediate consequence of Theorem 3.7. However, the
statement will be proven again in Section 5 by different methods. �

3.3. Free products of cyclic groups.

Lemma 3.12. Let G be a free product of finitely many groups G1, . . . , Gr. Then
each non-trivial element s of finite order lies in exactly one conjugate of one of the
factors Gi.

Proof. By [14, IV.1.6], s lies only in conjugates of some of the Gi. Assume therefore
that s ∈ G1. Then the equation s = g−1sig with si ∈ Gi and i 6= 1 is easily seen to
lead to a contradiction. �

Let N = 〈s0〉 ∗ · · · ∗ 〈sm〉 ⊆ PGL2(K) be the m-fold free product of the cyclic
group Cn acting discontinuously on P1. By the universal property of free products,
there is a unique homomorphism ϕ : N → Cn such that for each i = 0, . . . ,m the
diagram

〈si〉

~~}}
}}

}}
}} ∼=

!!C
CC

CC
CC

C

N ϕ
// Cn

is commutative. This homomorphism ϕ depends on the choices of the isomorphisms
〈si〉 → Cn. Here, all si are supposed to be mapped to the same generator of Cn.
In Section 5, we will consider also other choices.

Let Γ := kerϕ ⊆ N . It is easily seen to be of finite index n in N .

Proposition 3.13. The group Γ is free of rank m(n− 1) and freely generated by

sj0sis
−j−1
0 , j = 1, . . . , n− 1, i = 1, . . . ,m.

Proof. By [15, §1.3 and §2.(4)], Γ is generated by the asserted elements. This
generating system cannot be shortened, as the genus g of the Mumford curve X =
ΩN/Γ can be calculated by the Riemman-Hurwitz formula for the cyclic cover

X → P1

of degree n totally ramified in the Γ-orbits of the points in ΩN fixed by some si.
For this, we must check that the si have regular fixed points: this follows from [10,
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Satz 6], as, by Lemma 3.12, si fixes precisely one vertex of TN . So, we have 2m+2
ramification points, and

2g − 2 = −2n+ (2m+ 2)(n− 1),

which is equivalent to

g = m(n− 1).

Any non-trivial element γ ∈ Γ of finite order is conjugated to an element of
some 〈si〉. It follows that, in any representation of γ as a word in the generators

sj0sis
−j−1
0 and their inverses, the sum of the exponents cannot be zero—a contra-

diction. Therefore, Γ is torsion-free. As Γ is the fundamental group of a tree of
groups, it follows that Γ is free. �

4. Many-point Mumford covers

Lemma 4.1. Let N ⊆ PGL2(K) be a free tree product of finite cyclic groups
C1, . . . , Cr. Then N is discrete if and only if each free amalgam Ci ∗ Cj ⊆ N of
two neighbouring factors of N is discrete.

Proof. If N is discrete, then so is the subgroup Ci ∗ Cj .
We prove the converse by induction on r. If r = 2, then the statement clearly

holds true. Let, for r > 2, N = N ′ ∗ C with N ′ a free tree product with r − 1
factors and C = Ci for some i between 1 and r. By the induction hypothesis, N ′

is discrete. Also C ′ := C ∗ Cj is discrete, where Cj is the unique factor of N ′

neighbouring to C. Clearly, T := T ∗
N ′ ∪ T ∗

C′ ⊆ TK is a tree, and

T :=
⋃

γ∈N

γ T ⊆ TK

is a tree upon which N acts with finite vertex stabilisers:

Nv ∼=

{

N ′
v, v ∈ γ T ∗

N ′

C ′
v , v ∈ γ T ∗

C′

for some γ ∈ N .

By [13, Lemma 4.4.1(2)], it follows that N is discrete. �

Remark 4.2. In fact, with the notations from the proof of Lemma 4.1, it holds
true that

T = T
∗
N .

This is due to the fact that N is generated by the stabilisers Nv, where v runs
through all vertices of T (cf. the ”if“ part in ”g = 0“ of the proof of Theorem II in
[13, §7.]).

Lemma 4.1 allows us to prove a geometric criterion for arbitrary m-covers to be
Mumford covers. For this, denote by br(ϕ) the branch locus of an m-cover.

Theorem 4.3. An m-cover of type (e1, . . . , er) is a Mumford cover, if and only
if, after a suitable re-ordering of the pairs (λij , ei), there is an affinoid covering
U = {U1, . . . , Ur} of P1 such that

(1) Ui ∩ Uj is either empty or an annulus of thickness αp(ei, ej), if i 6= j,
(2) for all i = 1, . . . , r holds true: Ui ∩ br(ϕ) = {λi1, λi2}.
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Proof. If an m-cover ϕ : X → P1 is a Mumford cover, then P1 can be uniformised
by a free tree product N of cyclic groups, i.e. ϕ is part of a commutative diagram

Ω

N
  @

@@
@@

@@
// X

ϕ

��
P1

where X is a Mumford curve, and the space Ω ⊆ P1 is the complement of the
closure of the set of limit points for the action of N given by some discrete faithful
representation τ : N → PGL2(K).

The tree T ∗
N , embedded in TK via τ , allows the extraction of the cover U: the

stars around the vertices whose stabilisers are maximal yield discs Ui with deg(v)−1
”holes“, and the paths between any two nearest such vertices correspond to annuli
whose thickness was calculated in the proof of Theorem 3.7 as αp(ei, ej).

Let, conversely, ϕ be an m-cover satisfying the conditions (1) and (2). Taking
two intersecting Ui, Uj ∈ U, we can construct a four-point m-cover by setting the
ramification indices of all branchpoints outside Ui ∪ Uj to one. This is a Mumford
cover, by Theorem 3.7. Doing this for all intersecting pairs of affinoids from U, we
obtain a free amalgamated product which is discrete, by Lemma 4.1. �

Corollary 4.4. A cyclic cover ϕ : X → P1 is of Mumford type, if and only if there
is some α ∈ PGL2(K) such that α ◦ ϕ is an m-cover satifying conditions (1) and
(2) of Theorem 4.3.

Proof. This follows immediately from the fact that the cross-ratio of any four points
in P1 is invariant under projective linear transformations. �

Remark 4.5. Theorem 4.3 generalises the characterisation from [16] of hyperel-
liptic Mumford curves among 2-covers, proven in the case of residue characteristic
unequal 2 and by entirely different methods. This geometric condition is used by
Frank Herrlich for constructing a moduli space of hyperelliptic Mumford curves
[12].

5. The bound for four-point covers again

In the following, we will calculate the bound for four-point cyclic covers by
giving explicit faithful representations τ : N = Cm ∗ Cn −→ 〈s, t〉 ⊆ PGL2(K). In
the discrete case, the fixed points of s and t correspond then to four “upstairs”

ramification points of the cover Ωτ(N)
τ(N)

// P1 which we may and will assume to

be 0,∞; 1, λ with |λ| = 1.

The following Lemma shows that this approach is indeed legitimate, albeit indi-
rect.

Lemma 5.1. Assume that the branch locus of ϕ is 0,∞, 1, λ′ with |λ′| = 1. Then
it holds true that

|λ− 1| < αp(m,n) ⇔ |λ′ − 1| < αp(m,n).

Proof. This follows from the fact that any section T ∗
N → T ∗

N is isometric. �
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Remark 5.2. In fact the first approach from Section 3 was indirect in the same
manner as the approach in this section, as we calculated T ∗

N within T ∗
N .

The Kummer equations ym = xa(x − 1)b(x − λ)c to follow are to be understood
modulo Lemma 5.1. of the corresponding covers. In fact, the precise correspondence
between discrete faithful representations of N and Kummer equations is still not
settled.

5.1. Galois covers of prime degree. Let X → P1 be a cyclic cover of prime
degree q totally ramified above exactly four points. By projective linear transfor-
mation, we may assume that the branch locus of the cover consists of the points
0, 1, ∞ and λ, where |λ| = 1. The aim of this section is to redetermine explicitly
the conditions on λ for which X can be a Mumford curve by using Ford’s isometric
circles1.

Let N = Nq,q = 〈s〉 ∗ 〈t〉 ⊆ PGL2(K) be the free product of two copies of the
cyclic group Cq , where s is given by the matrix

s =

(

ζ 0
0 1

)

,

where ζ is a primitive q-th root of unity, and t is obtained from s by conjugation
with

ϕ =

(

λ 1
1 1

)

.

The latter means that

t = ϕsϕ−1 =
1

λ− 1

(

λζ − 1 λ(1 − ζ)
ζ − 1 λ− ζ

)

.

The elliptic transformation s has the fixed points 0 and ∞, whereas t has the fixed
points 1 and λ.

For further reference, we also give the matrix t−1:

t−1 = ϕs−1ϕ−1 =
1

λ− 1

(

λζ−1 − 1 λ(1 − ζ−1)
ζ−1 − 1 λ− ζ−1

)

.

Lemma 5.3. The normal free subgroups Γ of N of index q are all of rank q − 1
and given as Γ = Γf = kerϕf (f = 1, . . . , q − 1), where each ϕf is the map

ϕf : N → Cq , s 7→ ζ, t 7→ ζf .

Proof. The Γf = kerϕf are clearly normal and, by Proposition 3.13, these groups
are free of rank q − 1. These are in fact all normal subgroups of index q, as every
group homomorphism ϕ : N → Cq factorises through the abelian group N ab =
〈s〉 × 〈t〉:

N
ϕ

//

!!B
BB

BB
BB

B
Cq

Nab

ψ

=={{{{{{{{

and the map ψ can be made into the form

ψf : Nab → Cq , s 7→ ζ, t 7→ ζf

via an automorphism of Cq . �

1For the notion of isometric circles and their properties, cf. [6, Ch. I, §11].
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Theorem 5.4. The equation

yq = x(x − 1)a(x− λ′)b,

where 1 ≤ a, b < q and |λ′| = 1, defines a covering of the projective line by a
Mumford curve whose topological fundamental group is Γf as in Lemma 5.3, if and
only if

b = q − a and |λ′ − 1| < αp(q, q) =

{

|1 − ζp|
2, p = q

1, otherwise.

Here, the number f is such that af ≡ 1 mod q.

Proof. The condition b = q − a and af ≡ 1 mod q on the exponents was found by
van Steen using theta functions [17, Proposition 3.2].

The generators for Γf from Proposition 3.13 are

γif = sits−f−i =
1

λ− 1

(

(λζ − 1)ζ−f λζi(1 − ζ)
ζ−i−f (ζ − 1) λ− ζ

)

,

where i = 1, . . . , q − 1. An automorphism γ of P1 is hyperbolic if and only if
|Tr γ|2

|detγ| > 1. Now,

Tr γif =
(1 + ζ1−f )λ− (ζ + ζ−f )

λ− 1
, det γif = ζ1−f ,

therefore,

|Tr γif |2

|det γif |
> 1

⇔ |λ− 1| < |(1 + ζ1−f )λ−(ζ + ζ−f )|

= |1 + ζ1−f−(ζ + ζ−f )| ≤ 1,

where the equality holds, because the difference of the two corresponding terms has
norm |λ− 1| or less. It follows that, in the case

|λ− 1| = |1 + ζ1−f − (ζ + ζ−f )| = |1 − ζ||1 − ζ−f | = αp(q, q),

the group Γf is not discontinuous and therefore does not give rise to a Mumford
curve.

Let us assume that |λ− 1| < |1 − ζ|2. The isometric circles for γif and

γ−1
if = sf+its−i =

1

λ− 1

(

(λζ−1 − 1)ζf λζf+i(1 − ζ−1)
(ζ−1 − 1)ζ−i λ− ζ−1

)

are

Iγif
=

{

z ∈ P1 :

∣

∣

∣

∣

z −
ζ − λ

ζ − 1
ζi+f

∣

∣

∣

∣

<
|λ− 1|

|ζ − 1|

}

,

Iγ−1

if
=

{

z ∈ P1 :

∣

∣

∣

∣

z −
ζ−1 − λ

1 − ζ
ζ1−i

∣

∣

∣

∣

<
|λ− 1|

|1 − ζ|

}

.

One then sees that

I+
γif

∩ I+

γ
−1

if

= I+
γif

∩ I+
γ

jf
= I+

γ
−1

if

∩ I+

γ
−1

jf

= I+
γif

∩ I+

γ
−1

jf

= ∅

for all i, j = 1, . . . , q − 1. Therefore, the complement of the union of these open
disks is a good fundamental domain for Γf in the sense of [7, (4.1.3)]. �
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Example 5.5. Specialising the calculations for q = 2, one obtains again

|λ− 1| < |2λ+ 2| ≤ 1 =⇒ |λ− 1| < |2||λ+ 1| = |2|2,

because indeed |λ+ 1| = |1 + 1|, due to |λ− 1| < 1.

5.2. Totally ramified four-point covers. We assume that ϕ : X → P1 is of
degree m and totally ramified above the four branch points. Let Nm,m = 〈s〉 ∗ 〈t〉
with s and t of order m.

Theorem 5.6. Let q be a prime dividing m. Then the bound holds for m if it holds
for m′ = m

q
.

Proof. Assume that the bound holds for m′. We know already that it holds for
q. Therefore, the diagram with exact rows and columns (and Γq,q = Γf as in the
preceding subsection)

1

��

1

��

1

��
1 // Γq,q //

��

Nq,q

��

// Cq

��

// 1

1 // Γm,m //

��

Nm,m

��

// Cm

��

// 1

1 // Γm′,m′
//

��

Nm′,m′

��

// Cm′

��

// 1

1 1 1

yields generators for Γm,m which can be examined by the method of isometric
circles. Indeed,

Γm,m = 〈Γq,q , ζ
i
qΓm′,m′ζ−iq | i = 0, . . . , q − 1〉,

where ζq is a generator of Cq . By assumption, both Γq,q, and Γm′,m′ are free of
rank q− 1 and m′ − 1, respectively. As the right and middle columns are split, also
the left column splits. Therefore, Γm,m is free of rank

gm,m = (q − 1) + (m′ − 1)q = m− 1.

The generators obtained in this way from generators of Γq,q and Γm′,m′ are hy-
perbolic if and only if the latter are both Schottky groups, which is equivalent
to

|λ− 1| < min{αp(q, q), αp(m
′,m′)},

by assumption. But then one calculates that the isometric circles of any pairs of
different generators of Γm,m and their inverses do not intersect. Thus the bound
holds for m. �

Corollary 5.7. The bound holds for m, if the m-cover is totally ramified.

Proof. This follows by an iterative application of Theorem 5.6. �
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5.3. Four point covers with arbitrary ramification. Let X → P1 be a cover
of degree n ramified above the points 0, 1,∞, λ′ with |λ′| = 1 given by the pair
(N,Γ) with N = 〈s〉 ∗ 〈t〉 and a free normal subgroup Γ realised as the kernel of a
surjection N → Cn. Let the orders of s and t be d and e.

5.3.1. The case e | d. In this case, n = d, as otherwise X would not be connected.
Let ζ be a primitive n-th root of unity, and f := n

e
. As before, consider the maps

ϕk : N → Cn, s 7→ ζ, t 7→
(

ζf
)k
, (k, e) = 1.

The same method by Reidemeister as before yields generators for Γk = kerϕk

Bk := {γijk = sikγjks
−ik | i = 1, . . . , f, j = 1, . . . , e− 1},

where

γjk =
(

sfk
)j
t
(

sfk
)−j−1

.

Theorem 5.8. The bound holds for m-covers of type (d,m).

Proof. Let m = d` and consider the commutative diagram

X

Cd

��
Ω

∗Cd //

Nd,m ��@
@@

@@
@@

@

Γd,m

>>~~~~~~~~
P1

C`

��
P1

The vertical maps ψ : X → P1 and ϕ : P1 → P1 are cyclic, with a Mumford curve
X , and ϕ is ramified above {0,∞}. The branch locus of the horizontal map is
f−1({0,∞, 1, λ}) which coincides with the branch locus of ψ and is of cardinality
2`+ 2. By looking at the corresponding ∗-trees, we see that T ∗

∗Cd
has exactly `+ 1

vertices stabilised by Cd: more precisely, from one vertex v on one mirror, there
are ` paths to the other mirrors, and the pairwise intersection of thes paths is v (in
other words, T∗Cd

is star-shaped with centre v). Hence, ∗Cd is a free tree product
of `+ 1 copies of Cd.

Now, the top triangle with the cyclic cover ψ yields that Γd,m is isomorphic to
a free product of ` copies of Γd,d, which is part of an exact sequence

1 // Γd,d // Cd ∗ Cd // Cd // 1

However, from the proof of Theorem 5.6 we know that Γd,d is free of rank d − 1.
For C` = 〈ζ〉, this implies that

Γd,m = 〈ζiΓd,dζ
−i | i = 0, . . . , `− 1〉

is free of rank

gd,d` = `(d− 1).

By Corollary 5.7, the bound holds for ψ. The section T ∗
Nd,m

→ T ∗
∗Cd

being isometric

implies that the bound holds for ϕ ◦ ψ. �
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5.3.2. The case (d, e) = 1. In the case that (d, e) = 1, it follows that necessarily
n = ed. Consider the maps

ϕk` : N → Cn, s 7→ ζek , t 7→ ζd`,

where (k, e) = 1 and (`, d) = 1. Let σ := se, τ := td and

Bk` := {γij := σ−iτ−jσiτ j | i = 1, . . . , d− 1, j = 1, . . . , e− 1}.

Proposition 5.9. Γk` := kerϕk` is free of rank (e− 1)(d− 1).

Proof. This follows from a similar Riemann-Hurwitz argument as in the proof of
Proposition 3.13. �

Now assume that (p, d) = 1.

Theorem 5.10. The equation

yn = xa(x− 1)b(x − λ′)n−b,

where 1 ≤ a < n is of order e mod n, 1 ≤ b < n of order d mod n, (d, e) = 1 and
|λ′| = 1 defines a Mumford curve covering P1, if and only if |λ′ − 1| < αp(1, e).

Proof. From

σiτ j =
1

λ− 1

(

(λζdj − 1)ζei λ(1 − ζdjζei)
ζdj − 1 λ− ζdj

)

,

σ−iτ−j =
1

λ− 1

(

(λζ−dj − 1)ζ−ei λ(1 − ζ−djζ−ei)
ζ−dj − 1 λ− ζ−dj

)

we calculate

γij := σ−iτ−jσiτ j =
1

(λ − 1)2

(

aij bij
cij dij

)

with

aij = (λζdj − 1)(λζ−dj − 1) − λζ−ei(ζdj − 1)(ζ−dj − 1),

bij = λ(λζ−dj − 1)(1 − ζdj) + λζ−ei(1 − ζ−dj)(λ− ζdj),

cij = (ζ−dj − 1)(λζdj − 1)ζei + (λ− ζ−dj)(ζdj − 1),

dij = λζei(ζ−dj − 1)(1 − ζdj) + (λ− ζ−dj)(λ− ζdj).

By definition, det γij = 1. The trace of γij is

Tr γij =
2(λ− ζ−dj)(λ− ζdj) − λ(ζ−ei + ζei)(1 − ζdj)(1 − ζ−dj)

(λ− 1)2
.

Thus the condition for hyperbolicity of γij is

|λ− 1|2 < |2(λ− ζ−dj)(λ− ζdj) − λ(ζ−ei + ζei)(1 − ζdj)(1 − ζ−dj)|.

Set

εij := (1 − ζdj)(1 − ζ−dj)(1 − ζei)(1 − ζ−ei),

and notice that

ζei + ζ−ei = 2− (1 − ζei)(1 − ζ−ei).
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Therefore, the right hand side of the inequality equals

|2((λ− ζ−dj)(λ− ζdj) − λ(1 − ζdj)(1 − ζ−dj)) + λεij |

=|2(λ2 − λ(ζdj + ζ−dj) + 1 − 2λ+ λ(ζdj + ζ−dj)) + λεij |

=|2(λ− 1)2 + λεij |

=|λεij | = |εij |,

where the first equality in the last line holds true, because |2(λ− 1)2| ≤ |λ− 1|2.

In a similar way we obtain

γ−1
ij = τ−jσ−iτ jσi =

1

λ− 1

(

a′ij b′ij
c′ij d′ij

)

,

with

a′ij = (λζdj − 1)(λζ−dj − 1) − λζei(ζdj − 1)(ζ−dj − 1),

b′ij = λζ−ei(λζ
−dj − 1)(1 − ζdj) + λ(1 − ζ−dj)(λ− ζdj),

c′ij = (ζ−dj − 1)(λζdj − 1) + ζei(λ− ζ−dj)(ζdj − 1),

d′ij = λζ−ei(ζ−dj − 1)(1 − ζdj) + (λ− ζ−dj)(λ− ζdj).

The isometric circles are

Iγij
=

{

z ∈ P1 :

∣

∣

∣

∣

z +
dij
cij

∣

∣

∣

∣

<
|λ− 1|2

|cij |

}

Iγ−1

ij
=

{

z ∈ P1 :

∣

∣

∣

∣

∣

z +
d′ij
c′ij

∣

∣

∣

∣

∣

<
|λ− 1|2

|c′ij |

}

.

They do not intersect pairwise, if and only if

|λ− 1|2 < min
{

|dij − d′ij |, |dij − di′j′ |, |d
′
ij − d′i′j′ |

}

,

where i, i′ = 1, . . . , d−1 and j, j′ = 1, . . . , e−1 are such that the set to be minimised
does not contain zero.

Rewrite dij as

dij = (λ− ζ−dj)(λ− ζdj) − λζei(ζ−dj − 1)(ζdj − 1)

= λ2 − λ(ζ−dj + ζdj) + 1 − λζei
(

2 − (ζdj + ζ−dj)
)

− 2λ+ 2λ

= (λ− 1)2 + 2λ(1 − ζei) + λ(ζdj − ζdj)(ζei − 1)

= (λ− 1)2 + λ(1 − ζei)
(

2 − (ζdj + ζ−dj)
)

= (λ− 1)2 + λ(1 − ζei)(1 − ζdj)(1 − ζ−dj),

and, similarly, d′ij as

d′ij = (λ− 1)2 + λ(1 − ζ−ei)(1 − ζdj)(1 − ζ−dj),

and set e = pr`, (p, `) = 1. Then the minimum is attained for j = j ′ = pr−1` and
takes the value

|dij − di′j | = |λ| · |ζei
′

− ζei| · |(1 − ζdj)(1 − ζ−dj)| = |1 − ζp|
2 ,

since we assumed (d, p) = 1. �
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5.3.3. The case d 6 | e and e 6 | d. In the case d 6 | e and e 6 | d, we have

n = lcm(d, e) and ` = gcd(d, e).

Theorem 5.11. The equation

yn = xa(x− 1)b(x− λ′)n−b

where 1 ≤ a < n is of order e mod n, 1 ≤ b < n of order d mod n, and |λ′| = 1
defines a Mumford curve covering P1, if and only if

|λ′ − 1| < αp(d, e).

Proof. Let d′ := d
`
, e′ := e

`
, m := d′e′ and consider the diagram

1

��

1

��

1

��
1 // Γd′,e′ //

��

Ne′,d′

��

// Cm

��

// 1

1 // Γd,e //

��

Ne,d

��

// Cn

��

// 1

1 // Γ`,` //

��

N`,`

��

// C`

��

// 1

1 1 1

with exact rows and columns, where Na,b = Ca ∗ Cb, and the arrows Nd′,e′ → Cm
and N`,` → C` are as in Section 5.3.2 and Lemma 5.3, respectively. Thus, Γd′,e′

and Γ`,` are free of ranks (d′− 1)(e′− 1) and `− 1, respectively. From the diagram,
it follows that Γd,e is generated by Γe′,d′ and the Cm-orbits of Γ`,`, where Cm acts
by conjugation with the powers of some primitive m-th root of unity contained in
Nd,e. As the right and the middle columns are split, also the left column splits.
Therefore, Γd,e is free and is of rank

g = (d′ − 1)(e′ − 1) + (`− 1) ·m,

and we can construct in an obvious way explicit generators for Γd,e from the gener-
ating systems of Γd′,e′ and Γ`,` given earlier. Again one checks that these generators
yield a Schottky group if and only if

|1 − λ| < αp(d, e).

�

Remark 5.12. We are convinced that one can refine the method in [17] in order
to relate to arbitrary m-covers the precise Schottky group, as constructed here.
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