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Abstract

A p-adic version of Gromov-Witten invariants for counting plane curves of genus
g and degree d through a given number of points is discussed. The multiloop
version of p-adic string theory considered by Chekhov and others motivates us to
ask how many of these curves are Mumford curves, i.e. uniformisable by a domain
at the boundary of the Bruhat-Tits tree for PGL2(Qp). Generally, the number of
Mumford curves depends on the position of the given points in P2. With the help of
tropical geometry we find configurations of points through which all curves of given
degree and genus are Mumford curves. The article is preceded by an introduction
to some concepts of p-adic geometry and their relation to string theory.

PACS: ??? MSC2000: 14 H 10, 14 H 81.

1. Introduction

Since the work of Volovich [18] string theory has profited from p-adic meth-
ods. However, each p-adic field K has its own string theory. The consid-
eration of classical string theory as a limit of p-adic string theories for
“p → 1” requires a unified approach for all p-adic number fields for fixed
prime number p.

We propose p-adic geometry as a framework for realising this task. In
this article, we introduce methods from this framework with string theoretic
relevance. Some of these have been applied to the analysis of hierarchical
data [2]. More methods are developped in p-adic enumerative geometry
[3]. Of particular interest are the Mumford curves which play a role in the
p-adic multiloop calculations in [6]. Conjecturally, these special curves are
the only ones contributing to the string amplitude [6, Conj. 4.3.3]. From
the point of view of so-called tropical geometry, this CMZ-conjecture, as
we call it, should come natural. The reason is that tropical curves are
generically obtained from transforming Mumford curves into combinatorial
objects. In any case, our work is motivated by the conjecture.

The aim of our methodological overview is twofold. Primarily, we want
to show how they can be used to count plane Mumford curves. Secondly,
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we indicate how the methods could give a positive answer to a more precise
formulation of the CMZ-conjecture. Our long-term goal is to be able to
“predict” enumerative results for Mumford curves with p-adic string the-
ory, similarly as in the classical case—the only difference being that the
mathematical answers might be known before their physical derivations.

We refer to the article by Dragovich [8] for an introduction to p-adic
numbers and their relation to string theory.

2. Prélude: An introduction to p-adic geometry

Let Qp be the field of p-adic numbers. In the following, we will often use the
notation |x| for |x|K , where K is any finite extension field of Qp containing
x. This notation is well defined. In fact, we could as well consider x as an
element of Cp, the completion of the algebraic closure of Qp, and | | = | |Cp ,
the unique extension of | |p to Cp. By OK , we denote the ring of integers

OK = {x ∈ K | |x|K ≤ 1},

and κ = OK/πOK is the residue field. It is finite and does not depend on
the choice of the uniformiser π which generates the maximal ideal of OK .

The field K has an affine geometry. Hence, we can write K = A1(K).
However, this space is only the set of K-rational points of the geometric
object A1 which we call affine line. We will often make the distinction
between a space X and its K-rational points X(K).

The topology of p-adic spaces such as A1 is totally disconnected. This
uncomfortable fact can be remedied e.g. by introducing extra points. Here,
we do this with the method from [1] and call the extra points Berkovich

points. In the example of the affine line A1, the important Berkovich points
correspond to the discs Ba = {|x− a| ≤ r} with r > 0.

2.1. Projective spaces

The idea of projective space is to have a good compactification of affine
space which is locally affine. Projective n-space over K is

Pn(K) :=
{
lines through 0 ∈ Kn+1

}

One has a decomposition Pn(K) = An ∪ Pn−1(K), i.e. another projective
space “at infinity”. Projective coordinates are often written as

(x0 : · · · : xn)

with (x0 : · · · : xn) = (y0 : · · · : yn) if and only if there is some λ 6= 0 such
that xi = λyi for all i. The local structure is given by

Pn = U0 ∪ · · · ∪ Un

with affine pieces

Ui =

{(
x0

xi
, . . . ,

xn

xi

)

| xi 6= 0

}

∼= An.
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For example, P1 = A1 ∪ {∞} is the projective line. The projective plane is
P2 = A2 ∪ P1. It has the property that any two lines in P2 intersect.

The space Pn is endowed in a natural way with a line bundle. Namely,
for x ∈ Pn(K) let `x be the line in Kn+1 represented by the point x. This
line bundle is the tautological line bundle O(1) encountered later on.

2.2. Bruhat-Tits tree

The symmetry group of the projective line P1 over K is PGL2(K), the
group of fractional transformations

z 7→
az + b

cz + d
(1)

with ad − bc 6= 0. The map (1) is also called Möbius transformation. The
fact that Möbius transformations take discs to discs allows to construct
an infinite tree TK on which PGL2(K) acts as group of symmetries. This
tree is the Bruhat-Tits tree for PGL2(K) and can be visualised as the
hierarchical tree of discs

Ba = {x | |x− a|K ≤ |r|K},

the vertices being given by Ba and an edge is given by maximal strict
inclusion Bb ⊂ Ba of discs1, i.e. any Bc such that Bb ⊆ Bc ⊆ Ba satisfies
either Bc = Bb or Bc = Ba. The tree TK is a q + 1-regular tree, meaning
that from each vertex there are precisely q + 1 edges going out, where q
is the cardinality of the residue field κ. The geometric reason behind this
fact is that every vertex v of TK corresponds to a projective line P1

v, and
its attached edges correspond to the κ-rational points P1

v(κ). Hence, TK

can be seen as representing the combinatorics of infinitely many projective
lines glued together as (locally) depicted in Figure 1.

. . .
︸ ︷︷ ︸

q+1

Figure 1: Tree of projective lines.

An important fact is that the boundary of the tree TK is given by
P1(K). Namely, an infinite path in TK can be understood as a strictly
descending sequence of discs whose limit is their intersection: a K-rational
point in P1.

1However, there is some subtlety concerning the invariance under PGL2(K), wherefore
the vertices are given by equivalence classes of discs cf. [2, §3].
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Let now C = P1 \ {p1, . . . , pn} be the projective line over K with n
points (also called punctures) p1, . . . , pn removed. These points define a
subtree T = T (p1, . . . , pn) of TK by connecting all geodesic paths inside
the Bruhat-Tits tree between the punctures. In [2], this tree was interpreted
as dendrogram for the “data” p1, . . . , pn.

The tree T corresponds to the glueing of projective lines P1
v over κ for

each vertex v and then removing n punctures. This geometric object is a
singular curve Cs, the singularities being ordinary double points, and the
lines Xi constituing the curve Cs are the irreducible components. They are
represented in P1 by discs corresponding to Berkovich points ξi.

2.3. Mumford curves

The p-adic analogon of Riemann surface in the physics literature is the
Mumford curve. It allows a Schottky uniformisation: if Fg is a discrete
subgroup of PGL2(K) which is generated by g hyperbolic transformations,
then X = Ω/Fg is a complete algebraic curve. Here, Ω ⊆ P1 is the domain
of regularity of the action of Fg.

Not every p-adic algebraic curve allows a Schottky uniformisation. How-
ever, there are some characterisations of Mumford curves. Namely, every
p-adic curve X has a so-called OK-model. It is a curve X defined over the
ring OK of integers of K: consider some (local) set of equations for X, and
clearing all denominators yields equations with coefficients in OK . Then
reducing all equations modulo π yields a curve Xs defined over κ, called the
special fibre of X . In general, Xs is singular, even if X is not. By a theorem
of Deligne and Mumford [7, Cor. 2.7], it is possible for K sufficiently large
to find an OK-model X such that Xs is a so-called stable curve, meaning:

• All singularities of Xs are ordinary double points.

• |AutXs| <∞.

There is a reduction map

ρ : X → Xs (2)

which is locally “reduction modulo π”. The upper curve X is called the
generic fibre of X .

We now assume that K is sufficiently large. The characterising criterion
for X being a Mumford curve is then that the special fibre Xs is a union
of genus zero curves [10, Thm. 5.4.1, 5.5.5].

The special fibre Xs of a stable curve allows a combinatorial description
by taking as vertices the irreducible components of Xs and as edges the
double points. The resulting graph Γ is the dual graph of Xs. This yields
the next characterisation: X is a Mumford curve, if and only if the first
Betti number of the dual graph Γ of Xs equals the genus of X.

Let now X be a curve with n punctures. Then the dual graph of X can
be obtained from the dual graph Γ′ of the completion ofX by adhering some
infinitely long spines to Γ′. The result is a so-called n-pointed tropical curve
Γ = trop(X). We call the combinatorial object underlying Γ a semigraph,
and the spines are the punctures. There is a metric on Γ coming from the
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reduction map (2). Namely, the fibre ρ−1(x) of a point x ∈ Xs is either an
open disc or an open annulus A. The latter holds true, if and only if x is a
double point. The length of an edge of Γ is defined as the thickness of A.

Our central mathematical object will be the moduli space of n-pointed
genus g curves Mg,n whose points are equivalence classes [C, p1, . . . , pn],
where C is a complete curve of genus g minus n punctures p1, . . . , pn. The
moduli space is defined over the integers Z. Therefore, we advocate the use
of Mg,n in adelic physics, although our focus will be on Mg,n = Mg,n ⊗K
for K a sufficiently large extension of Qp.

The methods here yield a tropicalisation map

trop: Mg,n →M trop
g,n , [C, p1, . . . , pn] → [trop(C), p1, . . . , pn],

where M trop
g,n is the moduli space of n-pointed tropical curves of genus ≤ g.

The punctures of trop(C) are labelled in the same way as the punctures of
C. The moduli spaces are not compact. The Deligne-Mumford compactifi-
cation M̄g,n is defined by including the stable curves. This allows to define

M̄ trop
g,n as the space parametrising tropical curves whose edge lengths can

take any value between 0 and ∞. The latter comes from a singularity in the
generic fibre C. In the former case, it can happen that loops get contracted
to a vertex. Then trop(C) is not the tropicalisation of a Mumford curve,
as the Betti number is lower than the genus of C (cf. also [3]).

If g = 0, then trop(C) coincides with T (p1, . . . , pn) from the previous
subsection. Also the singular curve Cs considered there is the special fibre
of an OK -model C of C.

2.4. Tropical geometry of the p-adic projective plane

We give here a very brief introduction into the aspects of tropical geometry
which we later use. A more general introduction to tropical geometry can
be found e.g. in [16, 17].

The valuation map

Val : (K \ {0})2 → R2, (x, y) 7→ (vK(x), vK(y)),

with vK(z) = − log|z|K , has as its image the lattice 1
e
Z2 in the Euclidean

plane, where e is the ramification index of K over Qp. Making the p-adic
field K larger results in a refinement of the lattice. In the limit, or if
K = Cp, we obtain the rational points of the Euclidean plane.

The valuation map extends to the projective plane:

Val : P2 → TP2 (3)

by defining vK(0) = ∞ on each affine patch U , i.e. we get the extra points
(∞, y), (x,∞), (∞,∞) on the closure of Val(U). The tropical projective
plane TP2 is by definition the glueing of these closed sets. The result
is homeomorphic to the 2-simplex whose interior corresponds to R2, and
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whose boundary segments correspond to the parts with a coordinate ∞.
The simplex structure reflects the fact that the complement of (K \ {0})2

in P2(K) is the union H of three lines not intersecting in a common point.

However, the valuation map brings more changes. It transforms p-adic
geometry to so-called tropical geometry, in which the objects are piecewise
affine-linear spaces. For example, curves in (K \ {0})2 transform to sets
whose closures are tropical curves embedded in the plane [9, Thm. 2.1.1].
A tropical line in the plane is depicted in Figure 2. The three unbounded

v(y)

~~
~~

~~
~~

~~
~~

~~

v(x)
//

OO

Figure 2: A tropical line in the plane.

edges are explained by the fact that any line in P2(K) intersects H in three
points. More generally, any plane curve C of degree d intersects H in 3d
points. This means that the closure of Val(C) in R2 is a tropical curve with
3d ends (counted with multiplicity).

One successful application of tropical geometry was in providing ele-
mentary proofs to classical enumeration problems of algebraic geometry.
E.g. the Kontsevich formula [14, Claim 5.2.1] for counting rational curves
of degree d through 3d − 1 points in the plane was obtained by counting
plane tropical curves of genus zero [11].

2.5. p-adic vs. tropical integration over p-adic spaces

Here, we want to relate two ways of integrating over p-adic spaces. The
first one using the Haar measure on locally compact fields will be called
p-adic integration. The other method, which we call tropical integration, is
by taking a limit of measures coming from p-adic line bundles. This allows
to compute integrals via tropicalisation.

p-adic integration. On the locally compact additive group Qp, there
is a translation invariant measure dx called Haar measure. It is usually
normalised such that

∫

Zp

dx = 1.
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This measure can be extended to a measure on P1(Qp) by using the sub-
stitution

φ : x 7→
1

px
, (4)

which changes dx to p dx
|x|2p

. We also denote it as dx and obtain

∫

P1(Qp)

dx =

∫

Zp

dx+

∫

{x∈Qp||x|>1}

dx = 1 + p

∫

Zp

dx

|x|2p
= 1 + p ·

1

p
= 2.

The same holds true with any finite extension field K of Qp, as long as the
Haar measure dx is normalised to

∫

OK

dx = 1,

where OK = {x ∈ K | |x|K ≤ 1} is the ring of integers of K.
However, if we want to allow K to vary arbitrarily among the finite

extension fields of Qp, then it is often convenient to consider K = Cp,
the completion of the algebraic closure of Qp. This approach gives some
meaning to the limiting process “p → 1” as explained in [12], where it is
viewed as taking a sequence of uniformisers πK for each K. These have the
property

lim
K

|πK |K = lim
e→∞

p−
1
e = 1,

where e is the ramification index of K over Qp. In any case, one arrives at
trying to integrate over a field which is no longer locally compact.

Tropical integration. In order to be able to integrate over a p-adic space
X, as opposed to its set of K-rational points X(K), we use the method of
Chambert-Loir [5] for p-adic line bundles.

To the tautological line bundle O(1) on p-adic P1 can be associated
a curvature form c1(Ō(1)) as follows2: Let X be the union of two copies
of projective lines over κ intersecting in one point as in Figure 3. It can
be realised as a reduction modulo π of P1, and its dual graph has this
shape: • •. This corresponds to the substitution (4), and the pre-
image of the double point (represented by the open line segment) under
the reduction map ρ : P1 → X is the interior of the overlap D∩φ(D), where
D is the p-adic unit disc. Let now L be the line bundle over X which
is the tautological line bundle over each component. It can be seen as a

2The notation Ō(1) or L̄ stands for metrised line bundle. But we suppress the defini-
tion of the metric on L for the curvature form here.
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Figure 3: A possible reduction of P1.

reduction of O(1)⊗O(1) = O(1)2 on P1. Then, using the algebraic version
of curvature form on X, let

c1(Ō(1)) :=
1

2
(c1(L|X1

)δξ1 + c1(L|X2
)δξ2) ,

where δξi
is the Dirac measure supported on the Berkovich point ξi corre-

sponding to the component Xi. This defines a Borel measure on P1 which
induces via ρ the measure which distributes the weight 1

2 onto each end-
point of the unit interval. A careful application of a smoothing process
developped by Gubler [13] yields a measure µ on P1 which via the tropical-
isation map

P1 → TP1, x 7→ − log|x|K ,

induces the Lebesgue measure dλ restricted to TP1 satisfying
∫

P1

µ =

∫

TP1

dλ = 1

[3]. This measure µ differs onK from p-adic dx only by a factor 2. However,
µ has the advantage that it is well-defined over Cp. Hence, we arrive at a
tropical interpretation of the limit “p→ 1”. We will also call µ the tropical
limit of dx.

Let now X be a p-adic manifold of dimension d. The generalisation of
the method above needs d line bundles L1, . . . , Ld on X, and one obtains a
regular Borel measure by the formula

µ = c1(L̄1) ∧ · · · ∧ c1(L̄d) =
∑

Y

c1(L1|Y ) ∧ · · · ∧ c1(Ld|Y )δξY
, (5)

where Y runs through the irreducible components of the special fibre of a
given OK-model of X, and Li are specialisations of OK-models of Li.

3. The p-adic tree-level amplitudes

This section serves as a physical motivation for counting plane Mumford
curves. The methods from the previous section are applied to the string
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Figure 4: A stable 4-pointed genus 0 curve.

amplitude at the tree level, and will lead in the following section to an
interpretation of a conjecture by Chekhov et al. [6, Conj. 4.3.3] using more
precise terms. The named authors admittedly remained vague in formulat-
ing their conjecture. Let us recall from [8, 18] the p-adic 4-point Veneziano
string amplitude

A0
p(k1, k2, k3, k4) =

∫

Qp

|x|k1·k2
p |1 − x|k1·k3

p dx, (6)

where ki ∈ Cd,
∑4

i=1 ki = 0 and k2
i = 2. Adding the point ∞ does not

change the value of the integral, but yields a compact domain of integration
P1(Qp). As in the previous section, we integrate over the space P1, but now
view it as a moduli space:

P1 = M̄0,4, (7)

the Deligne-Mumford compactification of the moduli spaceM0,4 of 4-pointed
projective lines. It is one-dimensional, because the first three punctures
can be transformed to {0, 1,∞}, whereas the fourth puncture runs through
λ ∈ P1 \ {0, 1,∞}. The boundary is given by letting λ run into {0, 1,∞}.
In order to also have 4 punctures in this case, one takes the singular curves
as depicted in Figure 4. These are stable 4-pointed genus zero curves.

From (7), we can also write the 4-point amplitude (6) as

A0
p(k1, k2, k3, k4) =

∫

M̄0,4

|x|k1·k2 |1 − x|k1·k3 dx,

and consider now the contributions from different parts of the moduli space.
By looking at the possible trees T (0, 1,∞, λ) depicted in Figure 5, we see
that the moduli space M0,4 decomposes into 4 cells A,B,C,D. The first
three cells which allow the edge length in the tropical curve to vary, are
homeomorphic to the open unit intervall, whereas cell D is 0-dimensional.
The corresponding cell structure of the moduli space of tropical curves is
illustrated in Figure 6.

Observe that D looks like a zero set. Indeed, similarly as in Section 2.5.,
we can find a measure on P1 ∼= M̄0,4 which induces the uniform distribution

dλ on M̄ trop
0,4 via the tropicalisation map

trop: P1 → M̄ trop
0,4 .
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Figure 5: Trees representing the different cells of M0,4.

•
A

B

||
||

|| C
BB

BB
BB

D

Figure 6: The cell structure of M trop
0,4 .

With g(x) = |x|k1·k2 |1 − x|k1k3 , it follows that

∫

D

gc1(Ō(1)) =

∫

D

c1(Ō(1)) =

∫

trop(D)
dλ = 0,

where the first equality3 follows from g|D = 1.

This approach generalises to the case of n points. Namely, assume we
are given vectors k1, . . . , kn ∈ Cd with

∑n
i=1 ki = 0 and k2

i = 2. Then we
obtain:

Theorem 3..1 The p-adic n-point tachyon string amplitude at the tree
level

A0
p(k1, . . . , kn)

=

∫

M̄0,n

dx2 . . . dxn−2

n−2∏

i=2

|xi|
k1·ki |1 − xi|

kn−1·ki

∏

2≤i<j≤n−2

|xi − xj |
ki·kj

is contributed in the tropical limit only by those kinds of n-point configu-
rations P1 \ {0, 1, x2, . . . , xn−2,∞} for which T (0, 1, x2, . . . , xn−2,∞) is a
binary tree.

3In [13], the notation
R

fc1(Ō(1)) is preferred to our
R

gc1(Ō(1)), where f = − log g.
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4. Counting plane curves

Here, we sketch a construction of p-adic line bundles on the moduli space
M̄g,n of stable n-pointed genus g curves which can be used in order to count
curves in the plane passing through given points satisfying some tangency
conditions. Our approach is similar to the one in the previous section,
except that now we consider the case in which the physics is “removed”
from the problem.

4.1. p-adic ψ-classes?

The idea of ψ-classes is to allow the counting of curves with prescribed
tangency conditions when passing through some prescribed subspaces of
some target space.

Let Li be the line bundle on M̄g,n which yields in every curve C repre-
sented by x = [C, p1, . . . , pn] ∈ M̄g,n the cotangent in pi. This is called the
i-th cotangent bundle on M̄g,n. In complex algebraic geometry, the ψ-class
ψi is then defined as a certain cohomology class called the first Chern class
of Li:

ψi := c1(Li) ∈ H2(M̄g,n,Z)

which is nothing but the algebraic curvature encountered already in Section
2.5.. One obtains an intersection product

〈τk1
· · · τkn

〉 :=

∫

M̄g,n

ψk1 ∧ · · · ∧ ψkn (8)

which takes non-zero values if and only if
∑
ki = 3g − 3 + n.

The notation 〈τk1
. . . τkn

〉 introduced by Witten [19] suggests a “phys-
ical” interpretation of the τki

as operators on some Hilbert space whose
correlator is the integral. In any case, the value of 〈τk1

· · · τkn
〉 is symmetric

in k1, . . . , kn ∈ N. The expression ψk1

1 ∧ · · · ∧ ψkn
n can also be seen as a

positive measure µ on the space M̄g,n with total mass µ(M̄g,n) given by
(8).

Unfortunately, there is no sensible p-adic notion of Chern class of line
bundles. The consequence is that there are no p-adic ψ-classes at hand.
However, the p-adic analogon of the measure µ can be constructed as in
Section 2.5.. Namely, take an OK-model of M̄g,n whose special fibre is a
blow up of M := M̄g,n⊗κ in the boundary in such a way that the vertices of

M̄ trop
g,n correspond to the irreducible components of M. Take an OK -model

Li of Li. Then (5) defines a measure

c1(L̄1)
k1 ∧ · · · ∧ c1(L̄n)kn

on M̄g,n which is supported on the points above the generic points of the
components of M. A smoothing process yields as in Section 2.5. a measure
µp for which trop∗(µp) is a piece-wise Haar measure on M̄ trop

g,n [3]. It is
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uniform on the closure of each maximal cell of M̄ trop
g,n . Now, each cell

parametrises tropical curves of fixed combinatorial type, and the maximal
cells correspond to trivalent semi-graphs. So, we state our result:

Theorem 4..1 The p-adic “correlator”

〈τk1
· · · τkn

〉 :=

∫

M̄g,n

µp

is contributed only by the locus of trivalent Mumford curves in M̄g,n, and
is a weighted graph sum.

The proof follows by observing that trop∗(µp) is a measure for which
all cells of dimension lower than 3g − 3 + n are zero sets.

4.2. Including “gravity”

We now consider the problem of counting curves of degree d and genus
g passing through n = 3d + g − 1 points in the plane. A solution to
this problem was predicted through Witten’s conjecture [19], proved by
Kontsevich [14]. The idea is to count maps C → P2 of n-pointed curves
into the plane, called “instantons”. The existence of a target space X (here:
P2) introduces “gravity” to the system. By using so-called stable maps, one
obtains a compactification of the moduli space of instantons. The theory
then allows the construction of “gravitational” ψ-classes and correlators.

Recently, it was shown that counting maps of tropical curves to the trop-
ical plane TP2 yields the same numbers as for usual curves [15, 11]. Those
numbers are also called Gromov-Witten invariants. From a p-adic point of
view, the correspondence between the classical and tropical Gromov-Witten
numbers does not come as a surprise. Namely, we have a commuting dia-
gram

C

trop

��

// P2

ValA
��

Γ // TP2

with a lot of choices of maps ValA : P2 → TP2. Namely, for any configu-
ration A of three lines in P2 in general position, there is a transformation
α ∈ PGL3(K) which takes A to the three standard lines, i.e. the 2 coordi-
nate lines in K2 and the line at infinity. Then define

ValA := Val ◦α.

Classically, the number of curves passing through a set P of n = 3d+g−1
points in P2 does not depend on the position of the points, as long as they
are in general position. It follows that if for some A, the set ValA(P) con-
sists of n points in TP2 tropically in general position, then the number of
tropical curves Γ with b1(Γ) = g and degree d passing through ValA(P)
does not depend on their positions in TP2. As a side effect of this observa-
tion, we obtain the result:
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Theorem 4..2 If there exists a line configuration A such that ValA(P)
consists of n points tropically in general position, then

NMumf
d,g (P) = Nd,g.

i.e. the plane curves of degree d and genus g passing through P are all
Mumford curves.

4.3. The CMZ-conjecture in adelic string theory

A crucial observation in Section 3. was that integrating over all n-point con-
figurations on the projective line means in fact integration over the moduli
space M0,n of n-pointed genus 0 curves. Hence, a straightforward generali-
sation to the multiloop case means to integrate over Mg,n, the moduli space
of n-pointed genus g curves, resp. its Deligne-Mumford compactification
M̄g,n. Indeed, Chekhov et al. [6] describe a p-adic multiloop amplitude.
However, in their calculations they vary only the n points on the p-adic
Riemann surface X while keeping the surface itself fixed. But their con-
jecture [6, Conj. 4.3.3] is a statement about the amplitude when both, the
points and the holomorphic structure on X, vary. Tropically, this amounts
to varying the possible combinatorial types of Γ = tropX as well as the
possible lengths of the bounded edges of Γ. Hence, we can formulate:

Conjecture 4..3 The p-adic string amplitude

Ag
p(k1, . . . , kn) =

∫

M̄
trop
g,n

trop∗ µp

is contributed in the tropical limit by precisely the binary Mumford curves
via weighted summation of the graphs underlying their tropicalisations.
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