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Abstract

Dendrograms used in data analysis are ultrametric spaces, hence ob-

jects of nonarchimedean geometry. It is known that there exist p-adic

representations of dendrograms. Completed by a point at infinity, they

can be viewed as subtrees of the Bruhat-Tits tree associated to the p-adic

projective line. The implications are that certain moduli spaces known in

algebraic geometry are in fact p-adic parameter spaces of dendrograms,

and stochastic classification can also be handled within this framework.

At the end, we calculate the topology of the hidden part of a dendrogram.

1 Introduction

Dendrograms used in data analysis are ultrametric spaces. Hence they are ob-
jects of nonarchimedean geometry, a special instance of which is p-adic geometry.
Murtagh (2004b) shows how to associate to a dendrogram a set of p-adic repre-
sentations of integers. This lies well within the tradition of using ultrametrics
in order to describe the hierarchical ordering in classification (Murtagh 2004a
and the references therein).

However, there is seemingly a problem in the choice of the prime number p
for the p-adic representation of dendrograms by the fact that the geometry of
the p-adic number field Qp allows only at most p maximal subclusters of any
given cluster. We will show that this can be overcome by considering finite field
extensions of Qp, so that the convenient choice p = 2 becomes feasible for any
dendrogram. This seems to be compliant with the philosophy of allowing any
nonarchimedean complete valued field for describing, coding or computing in
data analysis. We acknowledge here our inspiration by Murtagh (2004a).

Our point of view is in fact of a geometric nature. For a p-adic geometer, a
dendrogram is nothing but the affine p-adic line A1 with n punctures from which
a certain kind of covering of A1 can be made whose intersection graph is the tree
in bijection with the dendrogram from the point of view of data analysis. In this
picture, the p-adic numbers forming the punctures are the data. Completing
the affine line to the projective line P1 and then taking an extra puncture ∞,
allows us to see the dendrogram as a subtree of the Bruhat-Tits tree, which is
an important object in the study of p-adic algebraic curves. A first application
is in the coding of DNA sequences (Dragovich and Dragovich 2006), which is
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a special case of p-adic methods for processing strings over a given alphabet,
as explained in Bradley (2007b), where also new invariants of time series of
dendrograms are developed.

It is an imperative from the geometric viewpoint to study families of dendro-
grams. For these, there exist already parameter spaces. In fact, it is the moduli
space of genus 0 curves with n punctures M0,n from algebraic geometry which
now becomes the central object of interest. Each point of the p-adic version of
M0,n is a dendrogram with the extra point ∞. It is then a natural consequence
that a stochastic dendrogram is a continuous family of dendrograms together
with a probability distribution on it, or, we can make this now more precise, a
map from a p-adic set of parameters S to M0,n with a probability distribution
on S. We will give an idea of p-adic spaces by explaining the Berkovich topology
one has on these. Due to the ultrametric property, p-adic spaces in a näıve sense
are totally disconnected. This problem can be remedied by introducing extra
points which can, in a generalized sense, be viewed as clusters of usual points.

In this framework, collisions of points in their evolution through time can be
formally described by considering the compactification M̄0,n by stable trees of
projective lines which we call stable dendrograms. Time series of dendrograms,
on the other hand, yield (analytic) maps M0,m → M0,n between the moduli
spaces. Further applications of these moduli spaces should be in the study of
consensus of dendrograms.

We end by calculating the topology of the hidden part of a dendrogram, i.e.
the subgraph spanned by vertices corresponding to clusters which do not have
singletons as maximal subclusters. This subgraph determines the distribution
of the other clusters, which are “near the end” of the dendrogram.

An introduction to p-adic numbers is Gouvêa (1993). Algebraic curves can
be learned with a minimum amount of technical requirements in Griffiths (1989).
A bird’s eye on moduli spaces of curves is found in Mumford (1999, Appendix:
Curves and Their Jacobians) A broader introduction to moduli of curves is
Harris and Morrison (1998). A non-technical introduction to Berkovich spaces
and analysis on the projective line is contained in (Baker 2004; Baker and
Rumely 2007). Those who intend an intensive study of these subjects might
wish to learn more algebraic geometry which can be found in Mumford (1999).

2 Dendrograms and nonarchimedean geometry

Dendrograms are known to be endowed with a nonarchimedean metric, also
called an ultrametric, for which the strict triangle inequality

d(x, y) ≤ max {d(x, z), d(z, y)}

holds. Therefore, it is quite tempting to use p-adic numbers for their description,
and in fact, this has recently been done (Murtagh 2004a; Murtagh 2004b). I
shall explain this along the example dendrogram of Figure 1, which is a slight
modification of Murtagh (2004b, Figure 1). Choose a prime number p, and
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Figure 1: A 2-adic dendrogram.

distribute the p numbers 0, . . . , p − 1 across the partitioning of the horizontal
line segments defined by the intersection points with vertical line segments of
the dendrogram. For the top horizontal line segment, one has to introduce one
extra vertical line segment going upwards1, as effected in Figure 1. On going
down on a path γ from the top vertical line segment all the way down to one
of the points xi, one picks up the numbers α on the traversed horizontal line
segments ` and obtains

x =
∑

ν

ανpν ,

where ν = ν(`) runs through all levels of the horizontal parts ` of the path γ.
In our example from Figure 1, we assume p = 2, and obtain the numbers

x1 = 0, x2 = 26, x3 = 25, x4 = 22,
x5 = 22 + 24, x6 = 22 + 23, x7 = 20, x8 = 20 + 21.

Note that these dyadic representations differ from the ones in Murtagh (2004b,
§2). In any case, each path from the top to a bottom end of the dendrogram
corresponds to a p-adic power series representation of an integer number. The
choice of the prime p is arbitrary. However, it might seem that the possible
number of vertical segments attached to one horizontal line segment allowing a
p-adic representation of a dendrogram might be bounded by p. But this is not
the case. In fact, one can restrict to the arbitrary choice p = 2, if one wishes,
and can describe all dendrograms by the help of a little algebra, as will be seen
in the following section.

1The usefulness of this extra detail will become apparent in the following sections.



3 THE BRUHAT-TITS TREE 4

3 The Bruhat-Tits tree

Let Qp be the field of p-adic numbers. It is a complete nonarchimedean normed
field whose norm will be denoted by |·|p. Consider the unit disk

D = {x ∈ Qp | |x|p ≤ 1} = B1(0).

It contains the p maximal smaller disks

B 1

p
(0), B 1

p
(1), . . . , B 1

p
(p − 1)

corresponding to the residue field Fp of Qp. This well known fact is actually a
consequence of the construction from the previous section.

It is useful to consider the p-adic projective line P(Qp) = Qp∪{∞}, in which
there is the maximal disk outside D:

{x ∈ P(Qp) | |x|p ≥ p} = Bp(∞).

Due to the ultrametric topology on the p-adic projective line, the “closure” of
an “open” disk depends somewhat on the choice of a point on its “boundary”
(Gerritzen 1978, §1.1). Therefore, we make

Definition 3.1. Let

B = {x ∈ P(Qp) | |x − a|p < r} (resp. B = {x ∈ P(Qp) | |x − a|p > r})

for some a ∈ Qp and a p-adic value r = |ε|p, ε ∈ Qp \ {0}, and let b ∈ Qp such
that |a− b|p = r. The affinoid closure of B with respect to ∞ (resp. to b) is the
disk

B̄ = {z ∈ P(Qp) | |x − a|p ≤ r} (resp. B̄ = {z ∈ P(Qp) | |x − b|p ≥ r}).

Using the projective line necessitates the introduction of an equivalence re-
lation on the set of all disks of P(Qp). Namely, disks B1, B2 are said to be
equivalent: B1 ∼ B2, if either B1 = B2 or the affinoid closure of P(Qp) \ B2

with respect to some point a ∈ B2 equals B1 (Herrlich 1980, §1). One checks
that the relation ∼ is indeed an equivalence relation.

The Bruhat-Tits tree TQp
is defined by setting its vertices to be the equiva-

lence classes of disks in P(Qp), and its edges are given by maximal inclusion of
disks, i.e. an edge e = ([B1], [B2]) means that B1 is strictly contained in B2, and
B1 is a maximal disk with this property, for suitable representative disks. It is
a well known fact that TQp

is indeed a tree. This can be seen directly in this
way: Each class is obviously represented by a unique disk B which is the closure
with respect to ∞ /∈ B, and the disks not containing infinity are preordered by
inclusion; so TQp

is a directed acyclic graph, hence a tree by the ultrametric
property of |·|p.

The star of a vertex v in TQp
, denoted as StarTQp

(v), consists of all edges
emanating from v. The edges of any star are in one-to-one correspondence with
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Figure 2: The Bruhat-Tits tree for Q2.

the points of P(Fp) = Fp ∪{∞}, i.e. the Fp-rational points of the projective line
over the residue field Fp. Namely, this is true for the vertex vD corresponding to
the unit disk D, and the group of Möbius transformations acts on TQp

(Herrlich
1980, Bemerkung 5). Thus the Bruhat-Tits tree TQp

is a p + 1-regular locally
finite tree. An illustration of TQ2

from Cornelissen and Kato (2005, Fig. 5) is
given in Figure 2.

By construction, the tree TQp
is invariant under transformations of the form

z 7→ az+b
cz+d

, with a, b, c, d ∈ Qp such that ad − bc 6= 0. These transforma-
tions are called projective linear or Möbius transformations, and form the group
PGL2(Qp). The reason for invariance under PGL2(Qp) is the well known fact
that Möbius transformations take equivalent disks to equivalent disks.

As it may happen that a cluster may have more than p maximal subclusters,
it would be convenient to be able to represent such dendrograms without en-
larging the prime p. So, let K ⊇ Qp be a finite extension field of Qp. The p-adic
norm extends, similarly as in the archimedean case, uniquely to an ultrametric
norm |·|K on K, and K is complete with respect to |·|K . Such a field K is called
a p-adic number field.

For a p-adic number field K, there is in a similar manner as for Qp a Bruhat-
Tits tree TK . Again K has a finite residue field with q = pm elements, and TK

is q + 1-regular. Therefore, in practical applications it should be possible to
stick to the prime p = 2 and make finite field extensions, if there are clusters
with more than 2 children clusters. Again, PGL2(K) respects the symmetries
of the hierarchical structure of the Bruhat-Tits tree, i.e. TK is invariant under
projective linear transformations defined over K.

For convenience, we assume now that K = Qp. However, all what is said in
the following is valid also for arbitrary p-adic number fields.
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It is well known that any infinite descending chain

B1 ⊇ B2 ⊇ . . . (1)

of strictly smaller disks in P(Qp) converges to a unique point

{x} =
⋂

n

Bn

on the p-adic projective line P(Qp). A chain (1) defines a halfline in the Bruhat-
Tits tree TQp

.
An end in a tree is an equivalence class of halflines, where two halflines are

said to be equivalent, if they differ only by finitely many edges. It is a fact that
the ends of the tree TQp

correspond bijectively to the points in P(Qp), and is
not too difficult to check.

The following subtree of the Bruhat-Tits tree is an idea of F. Kato (Kato
2005, §5.4) which turned out useful in the study of discontinuous group actions:

Definition 3.2. Let X ⊆ P(Qp) be a finite set containing 0, 1 and ∞. Then
the smallest subtree T ∗〈X〉 of TQp

having X as its set of ends is called the
projective dendrogram for X.

Note that the definition of T ∗〈X〉 makes sense, even if X does not contain
0, 1 or ∞.

Example 3.3. (1) Let x0, x1 ∈ P(Qp) be two distinct points, and set X =
{x0, x1}. It defines the subtree T ∗〈X〉 which is a straight line: the geodesic in
TQp

between x0 and x1, as illustrated in Figure 3.

x0
//oo x1

Figure 3: Geodesic line in TQp
.

(2) Let X = {x0, x1, x2} be a set of three mutually distinct points in P(Qp).
Then the subtree T ∗〈X〉 is a tripod, as depicted in Figure 4. We denote by
v(x0, x1, x2) the unique vertex of T ∗〈X〉 whose star has three edges.
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x0 x1

Figure 4: Tripod in TQp
.
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For a subset X of P(Qp), define T 〈X〉 to be the subtree of TQp
that is the

smallest subtree among all possible subtrees containing the vertices of the form
v(x0, x1, x2) with x0, x1, x2 ∈ X . Notice that this subtree is non-empty if and
only if X contains at least three points. We call T 〈X〉 the finite part of the
projective dendrogram T ∗〈X〉. We have the obvious inclusion

T 〈X〉 ↪−→ T
∗〈X〉

of trees.

It is useful to not take into account all vertices of the finite part T =
T 〈X〉 of a projective dendrogram. Consider all paths γ = [v, w] (without
backtracking) of maximal length in T whose vertices in (v, w) have no edges
outside γ emanating from them. By replacing every such path γ of T by a
single edge, but of equal length as γ, we obtain a so-called stable tree T stab,
whose vertices have the property that at least three edges emanate from each
of them. The tree T stab is called the stabilization of T .

Convention 3.4. By a (projective) dendrogram T ∗ = T ∗〈X〉 we will usually
mean the tree obtained by identifying the finite part T 〈X〉 with its stabilization
T stab.

A vertex v of T 〈X〉 is considered to be a cluster of the points corresponding
to the halflines in T 〈X〉∗ emanating from v. Fixing the points 0, 1 and ∞ is
done for reasons of normalization: two points define a geodesic, three points
define a unique vertex in TQp

, and the three points 0, 1 and ∞ define the vertex
vD corresponding to the unit disk D.

In this way, the usual dendrogram obtained from T ∗〈X〉 is

T
∗〈X〉 \ the halfline (vD,∞).

A “genuine” dendrogram has the property that X ⊆ Z∪{∞}, or, more generally,
∞ 6= x ∈ X has a finite expansion

x = α0 + α1π + · · · + αmπm, αν ∈ {0, . . . , q − 1},

where π is a prime element of OK = {z ∈ K | |z|K ≤ 1}, and q the order of the
residue field of K. Gouvêa (1993) contains more details on finite field extensions
of Qp.

Remark 3.5. As noted in Bradley (2007a), the task of hierarchical classification
conceptually becomes the finding of a suitable p-adic encoding which reveals the
inherent hierarchical structure of data. The reason is that the p-adic dendrogram
T ∗〈X〉 of a given set X ⊆ P1(Qp) is uniquely determined by X. Algorithmi-
cally, the computation of T ∗〈X〉 is much simpler than its classical counterpart
(Bradley 2007b, §3.2).
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4 The space of dendrograms

Call M0,n the space of all projective dendrograms for sets of cardinality n ≥ 3.
This space is known also under the name moduli space for genus 0 curves with
n punctures. The term “genus 0 curve” means nonsingular projective algebraic
curve of genus 0, i.e. projective line. By fixing n points x1, . . . , xn on the projec-
tive line P(Qp) and then changing these points by a Möbius transformation such
that the first three are 0, 1, ∞, we obtain a projective dendrogram as explained
in the previous section.

As moduli spaces parametrize objects up to isomorphism, and isomorphisms
of punctured curves send punctures to punctures, we indeed have a moduli space
M0,n of dendrograms by considering in each isomorphism class a normalized
representative.

It is a well established fact that

M0,n
∼=

(

P1 \ {0, 1,∞}
)n−3

\ ∆,

where ∆ is the fat diagonal given by xi = xj , i 6= j, and P1 is the projective
line, considered as an algebraic variety (Mumford 1999, Appendix: Lecture II).

One may imagine the space M0,n by fixing three points on P1 and letting
the remaining n − 3 points vary on the projective line without collision.

In the p-adic setting, a family of dendrograms for n points is given by a
map S → M0,n from some base space S. Each point s ∈ S corresponds to a
dendrogram, and the dendrogram varies in some sense, as s moves along S.

The “geography” of M0,n is as follows: pick a dendrogram x for n points.
Moving the points only slightly does not change the finite part of the dendro-
gram. Moving the points a little more results in changes in the lengths of the
edges of x, but the underlying combinatorial structure does not change. The
combinatorial tree of x occupies an open subset U of M0,n. Moving points of x
even more results in edge contractions: by contracting one edge, x moves from
U to a neighboring piece V . M0,n is covered by such disjoint open pieces, each
belonging to a combinatorial tree with n ends. This is due to the fact that
M0,n, like many spaces in nonarchimedean geometry, is totally disconnected.
This rather uncomfortable fact can be remedied by either resorting to a so-
called Grothendieck topology or by introducing extra points which then produce
a genuine topology, e.g. by considering Berkovich analytic spaces (Berkovich
1990). This topology will be explained in the following section.

∞
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Figure 5: Dendrograms representing M0,4.
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Figure 5 illustrates the dendrograms represented by the different parts of
M0,4: one “central” region v (three children) and three “outer” regions A, B, C
(at most two children). Any path from A to B or C passes through v, as the
edge has to be contracted and then blown up in a different manner.

5 The Berkovich topology on M0,n

We begin with the topology on the unit disk D of a p-adic number field. The
classical points of D are its K-rational points. However, Berkovich (1990) de-
fines more points which correspond to multiplicative seminorms on the algebra
of power series convergent on nonarchimedean spaces. For the unit disk this
amounts to (Berkovich 1990, 1.4.4):

1. the classical points,

2. the disks {x ∈ K | |x − a|K ≤ r} in D with r = |ε|K , ε ∈ K \ {0},

3. the disks as in (2), but 0 < r 6= |ε|K for any ε ∈ K,

4. the properly descending chains B1 ⊃ B2 ⊃ . . . of disks in D with
⋂

Bi = ∅.

The new points corresponding to (2), (3) or (4) are called generic, or generic
Berkovich points. This works also for the affine line K, where one takes the
multiplicative seminorms on the polynomial ring K[T ] and obtains similarly
the types (1) to (4) of points. The analogous result holds for the projective line.

The concept of generic Berkovich points via multiplicative seminorms works
also in higher dimension, and the result is that p-adic manifolds are locally
contractible (Berkovich 1999). In any case, by that concept, the data domain
can be viewed as a contiunuum.

Endowing our space of dendrograms M0,n with the Berkovich topology gives
us now a framework for considering continuously varying families of dendro-
grams. For example, a stochastic classification of n points (including ∞) is noth-
ing but a probability distribution on M0,n, possibly with compact support. Or
the problem of adding a new datapoint to a given classification x ∈ M0,n means
finding a probability distribution on the fiber π−1(x), where π : M0,n+1 → M0,n

is the map which forgets the (n + 1)-th puncture on the p-adic projective line.
A similar thing applies also to a family S → M0,n, where a distribution has to
be found on the fiber product S ×M0,n

M0,n+1 with the map π.

6 Allowing collisions

So far, our dendrograms for n points can vary continuously in families, but
collisions of points are strictly excluded. In order to allow collisions, one com-
pactifies the space M0,n to M̄0,n. We call the points of ∂M̄0,n(Qp) stable trees
of dendrograms or, by abuse of language, simply stable. In fact, these are the so-
called stable n-pointed trees of projective lines (Gerritzen, Herrlich and van der
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Put 1988). Such are algebraic curves C which are unions of projective lines L
together with n points X = {x1, . . . , xn} ⊆ C and have the defining properties:

1. every singular point is an ordinary double point,

2. the intersection graph of the projective lines L is a tree,

3. every projective line L of which C is composed contains at least three
points which are either singular points of C or lie in X ,

4. X consists of regular points of C.

In some sense, we can view the points of the boundary ∂M0,n(Qp) as dendro-
grams of dendrograms. We indeed have such applications in mind as classifica-
tions of classifications.

In order to understand what happens if a dendrogram x ∈ M0,n moves to the
boundary, consider a dendrogram with four distinct ends 0, 1, ∞, λ, considered
as points on the projective line L. The effect of λ moving towards one of the
other three points x is that, upon collision, another projective line L′ is formed
which intersects the original line L and on which λ and the point x are again
distinct. Such a configuration corresponding to a point of ∂M0,4 is given in
Figure 6. In any case, the resulting tree of dendrograms is indeed stable also
for n ≥ 4.

Figure 6: A stable 4-pointed tree of projective lines.

Note that the tree with ends corresponding to a stable dendrogram does
geometrically not differ from a projective dendrogram in M0,n, if one forms a
dendrogram for the punctures on each of the projective lines. The difference is
that different parts of that tree correspond to different projective lines. This is
useful for distinguishing points which are otherwise identified by collisions.

7 Finite families of dendrograms

Assume a finite family X of datasets X1, . . . , Xm each consisting of n (classical)
points of the p-adic projective line:

Xj = {x1j , . . . , xnj},
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and assume at the moment that they are all different. For example, X could be
a time series xi(tj) = xji of positions of n not colliding particles never at the
same place. Thus X is the union of the Xi and represents an element of M0,mn,
if we assume x11 = 0, x12 = 1 and x13 = ∞. By restricting to the points of Xj

(e.g by taking the points at time tj), we obtain a map

πj(X) : M0,mn → M0,n

which is the composition of the two maps

(0, 1,∞, x14, . . . , xnm) 7→ (x1j , . . . , xnj), (2)

(x1, . . . , xn) 7→ (0, 1,∞, x′

4, . . . , x
′

n), (3)

i.e. the canonical projection onto Xj followed by a Möbius transformation α ∈
PGL2(K) (cf. Section 3) which sends the first three points of Xj to 0, 1, and
∞. Note that the Möbius transformation α = αX is uniquely determined by X
and can be easily computed.

If we now allow collisions of datapoints, then we obtain a map

π̄j(X) : M̄0,mn → M̄0,n,

which we will not make explicit. Instead we note that if the number of distinct
points of X is k, then we have maps as before

πj(X) : M0,k → M0,nj
,

where nj is the number of distinct points in Xj . The πj(X) are again canonical
projections followed by Möbius transformations, and are closely related to the
maps π̄j(X).

The advantage of this moduli space approach to finite families lies in the
feasibility of handling situations where one has a continuous family of such X .
Moreover, the Möbius transformation αX varies continuously with X .

Again, as in Section 5, one can enrich the families by probability distributions
in order to obtain stochastic classifications.

8 Hidden vertices

Definition 8.1. Let T ∗ = T ∗〈X〉 be a projective dendrogram for X. A vertex
v of T = T 〈X〉 is called hidden, if StarT (v) = StarT ∗(v). The subgraph Γh

of T spanned by all its hidden vertices is called the hidden subgraph of T .

The quantity bh
0 , defined as the number of connected components of Γh,

measures how the clusters corresponding to non-hidden vertices are spread. As
Γh is a subgraph of a tree, this number equals also the Euler characteristic
χ(Γh).
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Definition 8.2. Let v be a vertex of a graph Γ. The number ordΓ(v) =
#StarΓ(x) is called the order of v in Γ. If ordΓ(v) = 1, then v is called a
tip of Γ.

By our convention, any vertex v of a dendrogram has order either 1 or greater
than 2.

Theorem 8.3. Let T ∗ = T ∗〈X〉 be a (projective) dendrogram with #X = n.
Then vh = # Vert(Γh) is bounded from above:

vh ≤
n − bh

0 + 1

2
.

Proof. Case: Γh connected. If Γh is connected, then either bh
0 = 1 or Γh = ∅.

We have for the number th of tips of Γh:

4th ≤ n, (4)

because each tip v in Γh must have at least two edges in T \Γh, and, again for
reasons of order, there must be at least two ends in T ∗ emanating from each
edge in StarT (v) \ StarΓh(v). This is illustrated in Figure 7, where v is a tip in
Γh, and e the unique edge in StarΓh(v).

Figure 7: A hidden tip in a projective dendrogram.

Now, the order in Γh of any vertex v is 0, 1 or ≥ 3. In the first case, th = 0,
and then

vh = 1 ≤
n

6
≤

n

2
,

where the first inequality follows in a similar way as (4). Assume now that Γh

has an edge. Removing from Γh all tips and their adjacent edges, and then
repeating the process iteratively yields a strictly descending sequence of trees
whose limit is either a vertex or empty. In any case, the number of tips removed

in the ν-th step is at most th

2ν . Hence, for some m ∈ N it holds true that

vh ≤
m

∑

ν=0

th

2ν
≤ 2th ≤

n

2
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which is the bound in case bh
0 = 1.

General case. In the general case, one must remove at least bh
0 − 1 ends in

order to make Γh connected. Then, after stabilizing, the resulting tree will have
at least vh vertices. Hence,

vh ≤
n − bh

0 + 1

2

by the previous case.

Corollary 8.4. For X with n = #X, there is a bound for the number of
connected components of Γh:

bh
0 ≤

n + 1

3
.

Proof. We may assume that Γh contains no edges. Then bh
0 = vh, and

vh ≤
n − vh + 1

2
,

from which the asserted bound follows.

The bound in Corollary 8.4 is not sharp, however.

Theorem 8.5. For the number of connected components of Γh, there is the
following sharp bound:

bh
0 ≤

n − 3

3
,

where n is the cardinality of X.

Figure 8: Glueing trees along a vertex and removing three ends.



9 CONCLUSION 14

Proof. We may assume that Γh has no edges. By an inductive glueing of trees
as in Figure 8 we obtain that for each additional connected component, one has
to subtract three ends, in order to produce a dendrogram having as few ends as
possible. Thus,

bh
0 ≤

n + 3(bh
0 − 1)

6
=

n − 3

6
+

bh
0

2
,

from which the bound follows. Now, if n is a multiple of 3, then bh
0 = n−3

3
by

construction. Therefore, in the general case,

bh
0 =

⌊

n − 3

3

⌋

can be constructed. This means that the bound is sharp.

9 Conclusion

We have given a geometric foundation for an ultrametric approach towards
classification. By extending usual dendrograms by an additional point ∞, they
can be considered as points of the moduli space M0,n for the projective line with
n punctures. The Berkovich topology allows to consider stochastic classification
as giving a continuous family of dendrograms with a probabiliy distribution on
it. The points on the boundary of M0,n arise from collisions of continuously
evolving datapoints and are interpreted as dendrograms of dendrograms. Time
sections of time series are given by maps M0,m → M0,n. Finally, the topology of
dendrograms is studied, resulting in bounds for the number of hidden vertices
and the Euler characteristic of the hidden graph which separates those clusters
containing datapoints as maximal subclusters. The consequence of using p-adic
methods is the shift of focus from imposing a hierarchic structure on data to
finding a p-adic encoding which reveals the inherent hierarchies.
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