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Abstract

In this article, we present an effective encoding of dendrograms by embedding
them into the Bruhat-Tits trees associated to p-adic number fields. As an appli-
cation, we show how strings over a finite alphabet can be encoded in cyclotomic
extensions of Qp and discuss p-adic DNA encoding. The application leads to fast
p-adic agglomerative hierarchic algorithms similar to the ones recently used e.g. by
A. Khrennikov and others. From the viewpoint of p-adic geometry, to encode a
dendrogram X in a p-adic field K means to fix a set S of K-rational punctures on
the p-adic projective line P1. To P1 \ S is associated in a natural way a subtree
inside the Bruhat-Tits tree which recovers X, a method first used by F. Kato in
1999 in the classification of discrete subgroups of PGL2(K).

Next, we show how the p-adic moduli space M0,n of P1 with n punctures can
be applied to the study of time series of dendrograms and those symmetries arising
from hyperbolic actions on P1. In this way, we can associate to certain classes
of dynamical systems a Mumford curve, i.e. a p-adic algebraic curve with totally
degenerate reduction modulo p.

Finally, we indicate some of our results in the study of general discrete actions
on P1, and their relation to p-adic Hurwitz spaces.

1 Introduction

Mumford curves arise as the generalisation of the so-called Tate uniformisation of p-adic
elliptic curves [13, §6]. The latter has a combinatorial description as a Z-action on the
real line “connecting” the points 0 and ∞ over Qp. The crucial idea by Mumford [10]
was to view the real line as a geodesic line inside the Bruhat-Tits tree TQp

for PGL2(Qp)
and to consider a discrete action of a subgroup G generated by g hyperbolic fractional
linear transformations acting regularly on a subdomain Ω of the p-adic Riemann sphere
P1. It turns out that the orbit space X = Ω/G is a complete algebraic curve of genus
g, and that not all p-adic algebraic curves admit such a uniformisation. A curve of the
form X = Ω/G as above is called a Mumford curve or a p-adic Riemann surface.

Here, we are concerned with the application of p-adic geometry in the analysis of
hierarchical data. From a geometric viewpoint, the tree TQp

represents the hierarchical
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organisation of all p-adic numbers, including ∞. Namely, a p-adic number can in a
natural way be viewed as an infinite path inside the tree T starting from some vertex
v. Two paths starting from v correspond to two p-adic numbers having their first terms
coincide in their p-adic expansions. The more terms they have in common, the closer
they are p-adically. Hence, for some given p-adic numbers, their geodesic paths in TQp

will yield a subtree which hierarchically represents their proximities. This motivates
the usefulness of the Bruhat-Tits tree for hierarchical data analysis by finding a way of
encoding data as p-adic numbers. Unfortunately, there is no natural way of doing this
for arbitrary data other than strings over an alphabet.

Time series of hierarchical data naturally yield the consideration of families of sets
of p-adic numbers. The corresponding geometric construct is a moduli space of such
families. Here, they come in the form of M0,n, the p-adic moduli space of n-pointed genus
zero curves. Classically, these and their variants in higher genus play an important role in
string theory, and we expect this also to be the case in p-adic string theory. However, for
data mining, a time series is simply a sequence of points in M0,n, and it would certainly
be interesting to be able to interpolate and have a curve inside the moduli space in order
to say something about the evolution of the time series, or the probability of a certain
behaviour in time.

2 Dendrograms

Dendrograms are a certain way of depicting trees arising in the hierarchical classification
of data. Their intention is usually to describe hierarchies found within some given dataset.
However, it is often the result of imposing hierarchies onto the data, depending on the
choice of a metric. A lot of work by Fionn Murtagh aims to find ultrametricity in data
in order to reveal underlying hierarchy, e.g. [11, 12]. The reason is precisely the tree-like
structure of any ultrametric distance. From a p-adic viewpoint, the following procedure
seems natural:

1. Encode dataset X = {x1, . . . , xn} by p-adic numbers Y .

2. Construct the dendrogram for X from the code Y .

The dendrogram for X is uniquely determinded by Y and can be computed quite
fast. Hence, the true problem is to find a suitable encoding by p-adic numbers. This is in
general a very difficult task, as one is likely to need the dendrogram a priori. However,
for strings of letters from a given alphabet, we will show how p-adic encodings can be
effected in Section 5.

A more precise definition of a dendrogram is that of a metrised tree with finitely
many ends, all of which are labelled.



In what follows, we assume that to each dataset X, there is given a dendrogram D
which is supposed to reveal the hierarchical structure within X.

3 p-adic dendrograms
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Figure 1: A 2-adic dendrogram.

Consider the dendrogram D as depicted in Figure 1. If one goes down from ∞ along
a path in D to some datum x = xi, and picks up the labels 0 or 1 along the way, then
one gets a 2-adic encoding

x =
∑
level ν

aν2ν ∈ Q2,

where coefficient aν is the number picked up at level ν. Here, this yields the numbers

x1 = 0, x2 = 26, x3 = 25, x4 = 22,
x5 = 22 + 24, x6 = 22 + 23, x7 = 1, x8 = 20 + 21

Of course, the procedure yields just finite 2-adic expansions of rational numbers. Notice
that any permutation of data labels xi yields the 2-adic code in different order. This is
equivalent to permuting branches in D, which leads to different representations of the
dendrogram in the Euclidean plane.

In any case, the whole dendrogram D gets embedded into an infinite tree: the Bruhat-
Tits tree TQ2 for the group PGL2(Q2). For a general prime number p, the tree TQp

is a
locally finite p+1-regular tree. The latter means that from each vertex there are precisely
p+ 1 emanating edges. The reason is that the vertices can be interpreted as p-adic discs,
and the edges are given by maximal non-trivial inclusion of discs. It is known that each
disc has precisely p maximally smaller subdiscs and lies inside precisely one minimal



bigger disc. Hence, each vertex has precisely p children vertices and one parent vertex.
This is illustrated in Figure 2.
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Figure 2: Local structure of TQp
.

The number p of children vertices comes from the isomorphism Zp/pZp ∼= Fp, saying
that the residue field of Qp is the finite field Fp ∼= {0, 1, . . . , p− 1} with p elements.
Hence, each downward edge can be labelled by any representative for Fp in the ring Zp
of p-adic integers. Quite common is e.g. the set of labels {0, . . . , p− 1}.

Moving downwards from some vertex v on will end in some p-adic number x ∈ Qp

as the intersection of a decreasing sequence of discs corresponding to the vertices on the
infinite path, and picking up labels as before yields a p-adic expansion of x as a Laurent
series in p. Hence, all of Qp can be considered as lying at the boundary of TQp . However,
there is one more boundary point of TQp outside Qp: taking the path going upwards
from each vertex will lead to the point ∞. Hence, we have found

∂TQp
= Qp ∪ {∞} = P1(Qp),

where the latter space P1 is the p-adic projective line.
We have seen even more that the local picture of the Bruhat-Tits tree allows a local

interpretation as another projective line: namely, there is a bijection

{edges emanating from vertex v} ∼= Fp ∪ {∞} = P1(Fp),

with the projective line defined this time over the residue field Fp.
Let now be given a finite set X = {x0, . . . , xn} of p-adic numbers. Then by taking

inside the Bruhat-Tits tree TQp
all geodesic paths between the points of X, one obtains a

subtree T (X) which we call a p-adic dendrogram. We give credit to Fumiharu Kato who
used this construction already in 1999 in the classification of p-adic discrete projective
linear groups (cf. also [8, §5.2]).

Observe that the 2-adic encoding of a dendrogram described above yields a 2-adic
dendrogram for the 2-adically coded data plus the extra “datum” ∞. This extra point
at infinity allows to determine the root of a dendrogram, from which all paths to genuine



data are oriented downwards, i.e. passing through children vertices. In Figure 1, the root
corresponds to the unit disc, because on the one hand the data code contains 0, 1 ∈ Q2,
and the three numbers 0, 1,∞ uniquely determine the p-adic unit disc as the intersection
of the three geodesics in TQp

connecting 0, 1,∞. And on the other hand, all data are
encoded by numbers within the p-adic unit disc

D = {x ∈ Qp | |x|p ≤ 1}

which is characterised by the fact that the p-adic expansion of its elements contains no
negative powers of p.

4 Non-binary data

In the previous section, we have seen how to p-adically encode data having a binary
dendrogram, and we have defined p-adic dendrograms which are not necessarily binary.
Hence, a natural way of encoding data whose dendrogram D is not binary would be by
increasing the prime number p to the size of at least the maximal number of children
vertices in D.

However, there is an alternative way of doing this without changing the prime p.
Namely, consider any finite field extension K of Qp. It is well-known that the p-adic
norm extends uniquely to a norm | |K , and that K is complete for this norm. Again, the
unit disc is the ring OK = {x ∈ K | |x|K ≤ 1}, and the next smaller disc containing 0 is
πOK , where π is a so-called uniformiser and plays the role of the prime p in K. It holds
true that the residue field

κ := OK/πOK ∼= Fq
is a finite field extension of Fp with q = pf elements for some natural number f ≥ 1.

In general, it holds true that

f = dimFp
(κ) ≤ dimQp

(K) =: n, (1)

where the dimensions are of that of vector spaces over the scalar fields Qp and Fp,
respectively. The result is that there are more discs defined over K than over Qp. More
precisely, the number of “children” disks has increased to q = pf , and there is a new
Bruhat-Tits tree TK which is again infinite, but this time q + 1-regular. The analogue
holds true:

∂TK
∼= P1(K)

{edges emanating from vertex v} ∼= P1(κ).

In fact, there is an embeding of trees

TQp
→ TK



given in general by subdividing edges and increasing the number of edges emanating
from a vertex. Note that that the subdivision of edges comes from a relation between
the uniformisers:

|π|eK = |p|p,
which causes the length of an edge in TK to be an e-th fraction of an edge length in TQp

.
The number e is called the ramification index of the field extension K/Qp. By adopting
the labelling method from above, we obtain the general encoding

x =
∞∑

ν=−m
aνπ

ν ,

where aν is taken from a system R of representatives in K for the residue field κ. This
is nothing but the π-adic expansion of elements from K.

In the case that (1) is an equality, the field extension K/Qp is called unramified. By
the well known formula

n = e · f,
this is equivalent to e = 1. In this case, the prime p can be taken as the uniformiser of K,
and we obtain again p-adic expansions—only with more choice of coefficients. A special
case is given by a so-called cyclotomic extension K = Qp(ζ) obtained by adjoining to Qp

the powers of a primitive (pf−1)-th root ζ of unity. This case is known to be unramified,
and we can take as coefficients

Rf :=
{

0, ζ, . . . , ζp
f−2
}

(2)

for the p-adic expansion of elements from K. Note, that for f = 1, this yields a set of
coefficients different from the usual choice {0, . . . , p− 1}.

The proofs for most of the statements in this section can be found in [7, Ch. 5].

5 Strings over an alphabet

Let A be a finite alphabet. We will show how to realise p-adic encodings of strings over
A.

First, denote by S(A) the set of all strings with letters from A. The subset of finite
strings will be denoted by Sfin(A). Now, for f sufficiently large, any injective map

A → Rf ,

with Rf defined as in (2), induces an encoding of S(A) in OK , where K is the cyclotomic
field Q(ζ) with ζ a primitive (pf − 1)-th root of unity. Clearly, the finite strings are then
in bijection with the set of polynomials Rf [p] in the prime p whose coefficients are from
Rf . We even have more [2, Thm. 3.1]:



Theorem 5.1 There exists a cyclotomic field K = Qp(ζ) with ζ as above, and a closed
isometric embedding φ : S(A) → OK such that φ(Sfin(A)) ⊆ Rf [p], and is dense in
φ(S(A)).

Here, the metric on S(A) is given by the Baire distance

δp(x, y) := inf
{
p−n | first n letters of x and y coincide

}
Note that the image φ(S(A)) is a disc with holes coming from the complement of φ(A)
in Rf . More precisely, if x ∈ OK is represented as

x =
∑
ν∈N

aνp
ν , aν ∈ Rf ,

the holes are given as the union of open discs

{a0 /∈ φ(A)} ∪ {a1 /∈ φ(A)} ∪ {a2 /∈ φ(A)} ∪ . . .

Note further, that although there are only finitely many encodings φ : A → Rf , there
are infinitely many p-adic encodings by changing the system R ⊆ OK of representatives
for the residue field κ.

6 p-adic clustering

If data X are encoded p-adically, it is a very simple and fast task to retrieve the uniquely
determined hierarchical structure of D given by the tree T (X). Any clustering algorithm
using the p-adic metric will never need to change the metric when measuring distances
between disjoint clusters C1 and C2, because of the fact

distp(C1, C2) = |x− y|p

for any x ∈ C1, y ∈ C2. Essentially, the fact that one seeks a subtree of a tree makes
things more simple and faster than in the archimedean situation. In [2, §3], an explicit
form of a p-adic hierarchic classification algorithm has been discussed. Benois-Pineau et
al. have applied such an algorithm in image segmentation [1].

7 DNA

As an example for what has been said in the previous sections, we discuss p-adic encoding
of DNA. Here, the alphabet is given as A = {A,G,C, T}, where

A = Adenine G = Guanine
C = Cytosine T = Thymine



Dragovich and Dragovich [6] choose a 5-adic encoding in the field Q5

φDD : A → R = {0, 1, 2, 3, 4}

with φDD(A) = {1, 2, 3, 4}. This allows for taking 0 as a “blank” in order to separate
words made out of A. So, in fact, they use the extended alphabet A ∪ {“blank”} and
encode it with a bijection to R taking the “blank” to 0.

Khrennikov and Kozyrev [9] use a bijection

A → F2
2

as their encoding. As an F2-vector space, F2
2 is isomorphic to the additive group of the

finite field F22 with four elements. This field, in turn, is the residue field of the cyclotomic
field K = Q2(ζ) with ζ a primitive third root of unity. Because of the correspondence

1↔
(

1
0

)
, ζ ↔

(
0
1

)
, 1 + ζ ↔

(
1
1

)
,

their encoding can be interpreted as choosing RXK = {0, 1, ζ, 1 + ζ} and a bijection

φXK : A → RXK,

which gives a 2-adic encoding. However, there is no “blank” in this case.
By the previous sections, we see that there are a lot more possibilities, even for 2-adic

encodings. For a version without “blank”, a bijection with

R2 =
{

0, 1, ζ, ζ2
}

could be used. And for a version with “blank”, an injection into

R3 =
{

0, 1, ξ, . . . , ξ6
}

could be interesting, where ξ is a seventh root of unity2.
The following questions come up naturally:

Questions 7.1 1. Are there among the possible 2-adic encodings

A → R3

some more preferred than others from the point of view of genomics?
2. Which are the best choices for systems R ⊆ OK of representatives for the residue

field κ = F23 from a genomic point of view (possibly including “blank”)?

Of course, there is the question, whether cyclotomic or unramified p-adic fields are
sufficiently suited for genomics.

2Notice that 7 = 2f − 1 with f = 3.



8 Time series

Assume that we are given some time dependent p-adically encoded data, i.e. a set of
p-adic numbers

St = {s0(t), . . . , sn(t)}

at some instances of time t = 0, 1, . . . , N . We assume that ∞ ∈ St and that there are no
“collisions” at any time, if we may use the language of “particles” moving inside some
“space”. This corresponds to the p-adic projective line with n+ 1 points removed:

Xt := P1 \ St,

which is the usual way of denoting an n + 1-pointed genus zero curve. If we normalise
for each t via some fractional linear map

z 7→ az + b

cz + d

the punctures St to contain 0, 1,∞, we have in Xt a standard representative of a point
xt inside the moduli space M0,n+1 of n+ 1-pointed genus zero curves defined over Qp. In
the language of moduli spaces, the time series St corresponds to a family Xt of punctured
curves which in turn comes from a map

{0, 1, . . . , N} →M0,n+1.

Collisions can also be treated in this way: simply replace M0,n+1 by a suitable com-
pactification M̄0,n+1 in which the boundary corresponds to all possible ways of colliding
particles.
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Figure 3: Edge contraction.

There is now an infinite-to-one map

Π: M0,n+1 → Dn, P1 \ S 7→ T (S)



into the space Dn of all dendrograms for n data and ∞. The fibre of a point x ∈ Dn
corresponds to the infinitely many possible p-adic encodings of the dendrogram associated
to x. Hence, these correspond to the sections f : Dn →M0,n, i.e. maps satisfying

Π ◦ f = idDn
.

The space Dn is a polyhedral complex of dimension

dimDn = dimM0,n+1 = (n+ 1)− 3,

where the subtraction of 3 comes from the normalisation after which 3 points are fixed.
The maximal cells Dn are all of the dimension of the moduli space and consist of the
binary dendrograms. A cell in Dn is characterised by the fact that the abstract trees
corresponding to its elements are all isomorphic, whereas the edge lengths vary. Passing
to a neighbouring cell amounts to contracting an edge as illustrated in Figure 3.

This geometric approach allows for considering the time series St as a sequence of
points on some (unknown) path inside M0,n. The analyst would then e.g. want to know
which paths are more likely than others in order to understand the dynamical behaviour
of the system and to estimate dendrograms at times outside the instances t = 0, 1, . . . , N .

9 Genus 1 time series
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Figure 4: A sequence of dendrograms.

Consider the sequence of dendrograms as given in Figure 4. We can view this as a
vertex vt determined by x at time t “jumping” along the geodesic line between 0 and 1
with respect to the fixed vertex determined by ∞, as in Figure 5.
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Figure 5: Vertex jump.

If the vertex jumps at a constant rate, i.e. the distance at each time is the same, then
we can model this by a translation along that geodesic line, or p-adically via a Möbius
transformation

γ : z 7→ −1
(1− c)z − 1

∈ PGL2(K),

where |c| < 1. This corresponds for vt to a jump of distance − logp|c| to the right. This
is the case of γ being hyperbolic.

By a change of coordinates taking (0, 1,∞) to (0,∞, 1) we transform everything said
above to a hyperbolic action of the cyclic group 〈γ〉 on the geodesic line between 0 and
∞, or p-adically: on K× = P1 \ {0,∞}. Hence, γ has now the form

γ : z 7→ c · z,

and we obtain the commutative diagram

K×
γ //

��
�O
�O
�O

K×/〈γ〉 = E

��
�O
�O
�O

0 // ∞oo
γ

// •

in which E is a so-called Tate elliptic curve. It is a p-adic curve of genus 1, and the
vertical wiggly arrows are the so-called reduction or tropicalisation maps.

The above example generalises to the case of a discrete action on the p-adic projective
line P1 of a group G of fractional linear transformations inside PGL2(K). If, in this case
Ω ⊆ P1 is the domain on which Γ acts without limit or fixed points, then C = Ω/Γ is
known to be a so-called Mumford curve, a p-adic analogon of Riemann surface.

10 Identifying p-adic Riemann surfaces

Mumford curves are considered for p-adic higher genus string amplitudes in [5], where the
authors call them p-adic Riemann surfaces. Unlike in the classical case, not all algebraic



curves defined over Qp are p-adic Riemann surfaces. However, Chekhov et al. conjecture
that the other curves do not contribute to the p-adic (or adelic) string amplitude [5,
Conjecture §4.3]. This brings another physical motivation to the general problem of
recognising Mumford curves among algebraic curves.

Notice that the loop in the commutative diagram of the preceding section is of length
− logp|c| and hence shrinks to zero, if |c| approaches unity. In this case, the fractional
linear transformation γ is not hyperbolic, and there is no longer a discrete action of 〈γ〉
on the geodesic.

On the side of elliptic curves, this corresponds to the fact that the family of elliptic
curves parametrised by γ converges to a p-adic elliptic curve which is not a Tate curve.
Such curves do exist, and they can be distinguished by their j-invariant.

In fact, let the elliptic curve E be given by an equation over K in Legendre normal
form

E : y2 = x(x− 1)(x− λ),

where we may assume that |λ| = 1 (this implies also |λ − 1| ≤ 1). Then, if K is a
sufficiently large finite extension of Qp, it holds true by [4, Ex. 3.8] that

E is a Tate curve⇔ |j(E)| > |2|4p
⇔ |λ− 1| < |2|2p

This result was already known for the case p > 2, in which |2|p = 1 [13, Thm. 5]. The
last equivalence follows from a well-known formula relating λ and the j-invariant. In
order to show that the first and third statements are equivalent, one can consider the
cover φ : E → P1 of degree 2 defined by the Legendre equation: φ is simply projection
onto the x-coordinate. This induces a cover of degree 2 of the tree T ({0, 1,∞, λ}) as
depicted in Figure 6. The proof then consists of calculating the infimum of ` for which
the upper graph still represents a Tate curve [4]. For p = 2, the intuition inf(`) = 0 fails
because of too many fixed vertices of the elliptic involution on the Bruhat-Tits tree.

In the case of general Mumford curves (or p-adic Riemann surfaces, if one wishes), one
can study the cover Ω → Ω/G = C in a similar combinatorial way. Here, the so-called
Hurwitz spaces, which are moduli spaces for covers between curves, come into play. It
turns out that the question whether the upper curve in a cover f : X → Y is a Mumford
curve is subtle. Only a restricted type of covers f can in principle allow X to be a
Mumford curve, and even then the answer depends on the position of the branch points
of the covering map f [3, 4].

11 Conclusion

A p-adic encoding of hierarchical data has been discussed from a geometric point of
view. Any dendrogram can in this way be viewed as a subtree of the Bruhat-Tits tree for
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Figure 6: Tate curve covering P1, graphically.

PGL2(K) defined over a p-adic field K large enough to encapture the maximal number of
children vertices in the dendrogram. This is possible without changing the prime number
p. The philosophical result is that cluster analysis becomes the finding of a suitable p-adic
encoding of data, because then the dendrogram is uniquely determined by the ultrametric
geometry. As an example, strings over a finite alphabet have been considered, where the
p-adic distance coincides with the Baire distance. Application to encoding of DNA has
been discussed, where the general question is raised which arithmetic conditions on a
2-adic field K must be imposed from the point of view of genomics.

A consideration of time series of hierarchical data leads to families of dendrograms or
n-pointed p-adic projective lines and their moduli spaces as a natural geometric frame-
work. Higher genus p-adic algebraic curves come into the scene, if a time series can be
modelled via a discrete action of fractional linear transformations on the p-adic Riemann
sphere. This and p-adic multiloop calculations in string theory [5] motivate the question
of how to decide whether a given algebraic curve of higher genus is a p-adic Riemann
surface.

It is the hope that methods from p-adic string theory and enumerative geometry will
eventually find their way into hierarchical data analysis.
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