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Abstract. The so-called essential matrix relates corresponding points of two images from the
same scene in 3D, and allows to solve the relative pose problem for the two cameras up to
a global scaling factor, if the camera calibrations are known. We will discuss how Hensel’s
lemma from number theory can be used to find geometric approximations to solutions of the
equations describing the essential matrix. Together with recent p-adic classification methods,
this leads to RanSaC,, a p-adic version of the classical RANSAC in stereo vision. This ap-
proach is motivated by the observation that using p-adic numbers often leads to more efficient
algorithms than their real or complex counterparts.

1 Introduction

According to [9], ultrametricity is pervasive in observational data, and this offers computa-
tional advantages and a well understood basis for developping data processing tools originat-
ing in p-adic arithmetic. Consequently, p-adic data encoding becomes necessary. In [1] it has
been shown that the choice of the prime number p is arbitrary. Hence p = 2 can be taken,
which is usually the computationally most advantageous prime number. In particular, the p-
adic Newton iteration method, known in number theory as Hensel’s lemma, is most efficient
for p = 2. We will use this method in order to give way to computationally efficient methods
for solving the relative pose problem from five corresponding points in stereo vision.

A well known hierarchical image encoding procedure is the (regular) quadtree. We will
show that it has natural 2-adic encodings which allow to view gray-scale images as real-
valued functions on p-adic spaces. This should be understood as an invitation to develop image
processing methods originating in p-adic functional analysis. In any case, image coordinates
are p-adic numbers in this situation. Although computationally efficient, the quadtree suffers
somewhat from its rigidity when it comes to handling measurement errors. We expect that
taking families of 2-adic encodings corresponding to small euclidean perturbations will lead
to a dynamic treatment of single images which can overcome this drawback without losing
too much computational efficiency.

An Introduction to p-adic numbers is e.g. [5].
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2 p-adic numbers

Kurt Hensel’s important contribution to number theory was to view numbers as analytic func-
tions on some imagined “Riemann surface”. In this imaginary situation, the “places” are given
by the prime numbers p which play the role of a local coordinate!, and then the number n has
“locally” a unique power series expansion

n=Y nyp",
v=0

which in the case of natural numbers # is in fact a finite expansion with coefficients n, €
{0,...,p—1}. The p-adic metric is given by the length of the common initial part:

)

In— m\p =r (D)
ifm=ng+---+ny_1p* L +myp’ +... and my # ny. This is an ultrametric, i.e. the strict
triangle inequality

v, < max {1, |

holds true. Allowing infinite expansions (1) means completion with respect to the p-adic met-
ric, and the completed space Z, of p-adic integers contains the usual integers Z as a dense
subset. Examples of negative numbers are

o0 1 oo
va:?7 Z(P*I)Pv:*1
v=0 p v=0

The primality of p guarantees that there are no zero-divisors in Z, and the field of frac-
tions @, can be formed which densely contains the rational numbers Q. Just like in the
function-theoretic case, the p-adic numbers thus correspond to the meromorphic functions:

QP—{ Y xp¥ xVE{O,....,p—l}}
v=—N

and have a “Laurent series” expansion. Observe further that Z, is the p-adic unit disk:

Z,,:{er,,H)dpg 1},

and we have in Q) an ultrametric space on which calculus can be performed.

p-adic approximation is given by finite expansions: x = xg+. .. x,_; p"~ ! +higher order terms.
That cut-off can be written by a congruence

x=x0++x_1p" 1 mod p", 2)

from wich it follows that the p-adic expansion of x is given by an infinite sequence of congru-
ences (2) withn =1,2,3,.... And indeed,

n—1
x= Y xp'| <p",
v=0

p

! In fact, this dream became true thanks to Grothendieck’s concept of scheme: The “Riemann
surface” is the affine scheme SpecZ, the space whose points are the prime ideals pZ for
p =0 or a prime number. Cf. e.g. [7]
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we have convergence of these finite expansions to x for n — oo.
At last we remark that Q, is endowed with a Haar measure dx such that

/dx:l,
Z,

i.e. the unit disk has volume 1.

3 p-adic encoding of images

20 5 20 21 x 2! 22x22 .. 2NN

Fig. 1. Hierarchical subdivision of an image

A 2-adic encoding of square 2V x 2V-images can be obtained by a hierarchical subdivision
as in Fig. 1. Essentially, there are two approaches for the encoding. In the bottom-up encoding,
the squares at highest resolution are assigned to level N, with decreasing level at higher hier-
archy, level O representing the full image cluster. The encoding scheme for the x-coordinate is
to traverse a path from bottom to top, and collect a coefficient ay = 0 for each right turn, and
ay = 1 for left turns. This yields the expansion

N
x= Z ay2~V.
v=0
Fig. 2 (left) exemplifies this with
=0 x=2"' x=22  xy=2"24271

The intensities (gray values) on the image grid can be viewed as locally constant functions
f: Qp — R, as vertices in the dendrogram at level v can be viewed as p-adic disks of radius
pY. With the bottom-up encoding the functions are constant on all translates of the unit disk
Z.,, and methods from p-adic functional analysis are ready for application. The functions
which are constant on the sets x + 7, are in one-one correspondence with functions on the
co-set space Q,/Z,.

Example 3.1 (p-adic diffusion) p-adic diffusion can be described as a symmetric jump pro-
cess on Q[ Zp, with the transition probability Py, depending only on their p-adic distance:

Py =p(jx=yl,).
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Fig. 2. Left: bottom-up encoding, right: top-down encoding of a dendrogram

The equation describing the evolution of probabilities is given by

w0 = [ (00 =) plx )

Q,
By taking as integral kernel the function
=y,
plx—yl,) = 7L
P (=)

with oo > 0, one obtains p-adic Brownian motion. Here, the role of the Laplace operator is
played by the Vladimirov operator

1 J) —f()
DY f(x,1) = d
flx,1) Fp(—oc)Q e Y,

—_ o—1 . . . . . .
and I'p(o) = 117% is the p-adic gamma function. The diffusion equation

I = =D ()

t

can be viewed as the p-adic analogue of a scale-space equation, where t plays the role of
the scaling parameter. However, a p-adic scale-space theory, from which feature detectors
and descriptors can be derived, has yet to be developped. More on p-adic pseudo-differential
equations, functional analyis and mathematical physics can be found in [12].

The top-down encoding reverses the order of bottom-up, and expansion is in positive
powers of 2. This yields 2-adic integers for image coordinates, which turns out useful in the
following section. In Fig. 2 (right) one obtains

x;1 =0, xz:2l, /‘63:227 X4:21+22.

4 Epipolar geometry

Epipolar geometry is the geometry of two pinhole cameras [6]. These are described as projec-
tive maps Pr, Pg: IP3 — IP? between projective spaces. Imagine the two cameras viewing the
same point x in a 3-dimensional scene. The plane spanned by x and the two camera centers
O, Og is called the epipolar plane. This plane cuts out in each of the cameras’ image planes
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a line, called the epipolar line. To the projection point x; = Pr,x of x onto the left image cor-
responds the line through xg = Pg x and eg, where ey, is the intersection of the line Oy Og with
the right image plane. This line is given by

(eR X XR)TXR =0.

By writing the vector product as multiplication with an anti-symmetric matrix Sk and taking
the pseudo-inverse of P back to x. More precisely, eg X xg = Sgxg, and x = PL+ X7, we obtain

0= (eR XXR)TXR :x£ (eR XXR) :xg SRPRPL+ XL, (3)
N——
=F

where F is the fundamental matrix. This matrix encodes the relative motion between the two
cameras, together with their intrinsic parameters given by the calibration matrices Ky, Kg:
F =K, 'E Kpg. The matrix E is the essential matrix and is the fundamental matrix of two
normalised cameras, which corresponds to the case where both calibrations are known. The
essential matrix decomposes into a rotation R and a translation t: E = R|[t]«, where [f]« is the
matrix for cross product with ¢. This decomposition can be effected, and is unique upto a sign
ambiguity. The problem of stereo vision is thus reduced to the estimation of £ from two given
images of the same scene.

The essential matrix is a projective 3 x 3-matrix. Hence, 8 independent equations of the
form (3) suffice for determining E. The first algorithm starts with
JEX =0, ... xXLEx;=0,

where (x;,x;) are 8 generic pairs of corresponding points in the two images.

Although the 8-point algorithm became successful, its resulting matrix E is not alwys an
essential matrix. This is because further constraints have to be met. For example, from (3) it
can be easily seen that an essential matrix must fulfill

detE =0,

which leads to the 7-point algorithm.

The minimal number of point correspondences needed for determining the essential ma-
trix is five. This leads in the generic case to a four-dimensional solution space. Writing the
general solution as

E=u k) +uk)+uzE3+uyky,

one obtains homogeneous linear polynomials in four variables uy,...,u4. The constraints for
E are given by

1
EETE - 3 Trace(EET)E =0, 4)

equations which describe a space Mg containing all essential matrices [4]. Hence, one is left
with solving a system of homogeneous cubic equations in four variables. Demazure showed
that there are up to 10 complex solutions to (4). Nistér’s first five-point algorithm reduces the
system (4) to a univariate equation of degree 10 which then has to be solved numerically [10].

The importance of having the minimal number of point correspondences in order to find
finitely many exact solutions to the problem lies in the fact that outliers generally lead to
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bad results. Higher stability is obtained by a Random Sample Consensus (RanSaC). Here,
a random sample of 5 pairs of corresponding points in general position is chosen. The up
to 10 real candidate essential matrices are collected, and another sample is taken, etc. After
sufficiently many samples, the candidate matrix whose €-neighbourhood contains the highest
number of solutions from all samples is declared as the “essential matrix” for the stereo vision
problem. In essence, a classification of the candidates is performed, and the biggest cluster
contains the winning candidate.

5 Hensel’s lemma and RanSaC,

The projective cameras can also be p-adic projective maps P*(Q,) — P?(Q),). Thus we are
lead to estimate p-adic essential matrices. The notions of translation and rotation make sense
p-adically. The latter is defined algebraically: namely a 3 X 3-matrix R satisfying

RRT =1, detR=1.

The top-down encoding from Section 3 ensures coordinates from Z,. In particular, the co-
effients of (4) are p-adic integers. In this case, Hensel’s lifting lemma can be used for p-
adically approximating the solutions of (4). The point is that a sequence of linear congruences
modulo pF is iteratively solved, which makes the procedure to a p-adic version of Newton’s
method. For convenience, we formulate the lemma in the case of n equations in m variables in
the most familiar version:

Lemma 5.1 (Hensel) Let £(X) = (fi(X1,.--,Xm),- s fa(Xis--.,Xm)) be an n-tuple of poly-
nomials in m variables with coefficients from Z.,. Let a € Zg such that

f(a)=0 modp, and 1k (j—;(a) mod p) is maximal.

Then there is a unique solution a’ of f near a:

f(a)=0, a'=a modp.

RanSaC,, the p-adic version of Random Sample Consensus, collects all candidate essen-
tial matrices from all random samples of five corresponding pairs of image points in a set &,
and performs a p-adic classification. The central elements of the largest cluster determine the
choice of solution for the problem.

The classification method proposed in [3] is to find a clustering of & by minimising for

fixed k the quantity
gl’ = 8]7((5)7%73) = Z Z Ha_aCHpv
Ce% acC

where ¢ = {Cy,...,Cs}, £ < k is a clustering of &, a = (ac)cew With ac € C, and

[EEsI :max{|x1|p,...,\xn|p}

is the maximum norm on Q7 (in the present case n = 9). The algorithm is a p-adic adaptation
of the classical split-LBG [8], a hierarchical version of k-means by splitting cluster centers
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in two and regrouping the cluster around the new centers. The p-adic adaptation is called
LBG), and first splits clusters by replacing vertices in the dendrogram by their children, and
afterwards finding centers ac in cluster C which further minimse €, (cf. [2] for details).

In the event that there is not a unique biggest cluster, the cluster with highest density can
be chosen. This is measured by

ICl—1
8(C)=1{ u(©)”’

0, otherwise

IC] > 1

where
w© = [ 1nedx
Q;
with 1. the indicator function of the smallest ball in Q}, containing C.
As a further tie-breaking rule can be taken the cluster precision, given by

7(C) = @

where C. is the intersection of C with the smallest ball in Q, containing the centers of C.

6 Discussion and outlook

An implementation of RanSaC,, as outlined in [3], is ongoing work with V. Anashin and his
students. Preliminary results are that Hensel lifting is fast whenever possible. At the moment,
a number of samples do not fulfill the lifting condition of Lemma 5.1. But, in general, unique
lifting is possible also under weaker conditions, and it remains to classify samples according
to their liftability behaviour. This leads to the research task of studying the p-adic geometry
of Demazure’s variety Mg of essential matrices. We expect to be able to identify in Mg the
locus of Hensel-liftability, as well as other regions for which some ad-hoc lifting methods can
be devised. Ideally, one would be able to read off the 5-point configuration the corresponding
region in Mg in order to quickly decide whether to discard the sample or to lift with Hensel
or in an ad-hoc manner. This should enable the p-adic 5-point algorithm to outperform its
classical counterpart in terms of efficiency, because p-adic numerics are very fast for small
primes p (here the choice p = 2 becomes an asset).

Another issue is that of registration errors. Namely, erroneous point-correspondences in
the two images lead to erroneous essential matrices. The p-adic approach has the drawback
that small euclidean inaccuracies can lead to large p-adic errors. The research problem is how
to overcome this drawback. A promising idea seems for us to study the variation of the 10
points in Mg given by the translation group x — x+ €. Namely

) = flx+e) ©)

amounts to a shift in the division points for the quadtree-like subdivision underlying the en-
coding. The error € is controlled by the (inverse) Monna map to the real numbers:

e=Y ep'—Me)=Y ep V!,

where M(€) is to be taken small. Here, it is quite tempting to view (5) as part of the Weyl
representation of p-adic quantum mechanics [11] which in particular for processing complex-
valued images can lead to exciting new p-adic methods.
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7 Conclusion

Viewing the hierarchical world as ultrametric leads to the consideration of p-adic methods for
detecting and processing hierarchies. For this, p-adic data encoding becomes indispensible.
This applied to images yields encodings of special quadtrees, known in image processing.
The bottom-up method introduced here opens the way for methods from p-adic mathematical
physics, whereas the top-down method renders p-adic integers as image coordinates. The latter
allowed the use of Hensel’s lifting lemma to the equations arising in the problem of finding
the essential matrix from five point-correspondences in stereo vision.

p-adic classification algorithms are known to be more efficient than their classical coun-
terparts. Hence, it is natural to use a recently developed p-adic method as part of RanSaC,,
a p-adic form of the Random Sample Consensus applied to the five-point relative pose prob-
lem in order to find the “best” p-adic approximation to the essential matrix as the one lying
centrally in the biggest cluster.

Acknowledgement. The author thanks Sven Wursthorn and Boris Jutzi for introducing him to
the topic of computer vision, and for valuable discussions.
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