Families of dendrograms

Patrick Erik Bradley

1. Introduction

- Dendrograms are ultrametric spaces
- Ultrametricity is pervasive (F. Murtagh)
- p-adic geometry $=$ natural environment for ultrametricity

2.1. Eucledian vs. p -adic geometry

Euclidean geometry.

 \bullet modelled on the real numbers $\mathbb R$

2.1. Eucledian vs. p -adic geometry

Euclidean geometry.

- \bullet modelled on the real numbers $\mathbb R$
- decimal system

$$
\sum_{\nu=m}^{\infty} a_{\nu} 10^{-\nu}, \quad a_{\nu} \in \{0, \dots, 9\}
$$

2.1. Eucledian vs. p -adic geometry

Euclidean geometry.

- modelled on the real numbers $\mathbb R$
- decimal system

$$
\sum_{\nu=m}^{\infty} a_{\nu} 10^{-\nu}, \quad a_{\nu} \in \{0, \ldots, 9\}
$$

• \mathbb{R} = completion of rationals $\mathbb Q$ w.r.t. absolute norm:

$$
|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}
$$

2.1. Eucledian vs. p -adic geometry

p-adic geometry.

Let p be a prime number.

2.1. Eucledian vs. p -adic geometry

p-adic geometry.

Let p be a prime number.

• *p*-adic norm on Q:
$$
|x|_p = \begin{cases} p^{-\nu_p(x)}, & x \neq 0 \\ 0 & \text{otherwise} \end{cases}
$$
 $x = \frac{a}{b}, a, b \in \mathbb{Z}$, $\nu_p(x) = \nu_p(a) - \nu_p(b)$.

 $\nu_p(n)$ = multiplicity with which p divides integer n:

$$
n = p^{\nu_p(n)} \cdot u, \quad p \nmid u.
$$

2.1. Eucledian vs. p -adic geometry

p -adic geometry.

Let p be a prime number.

\n- \n
$$
p\text{-adic norm on } \mathbb{Q}: |x|_p = \begin{cases} p^{-\nu_p(x)}, & x \neq 0 \\ 0 & \text{otherwise} \end{cases}
$$
\n $v_p(x) = v_p(a) - v_p(b).$ \n $v_p(n) = \text{multiplicity with which } p \text{ divides integer } n:$ \n $n = p^{\nu_p(n)} \cdot u, \quad p \nmid u.$ \n
\n

• $\mathbb{Q}_p =$ completion w.r.t. $\lvert \cdot \rvert_p$

$$
\Rightarrow x = \sum_{\nu=m}^{\infty} a_{\nu} p^{\nu}, \quad a_{\nu} \in \{0, \dots, p-1\}
$$

 p -adic expansion of p -adic numbers.

Remark. $|\cdot|_p$ is an ultrametric:

$$
|x|_p \ge 0, \quad \text{and} \quad |x|_p = 0 \Leftrightarrow x = 0 \tag{1}
$$

$$
|x \cdot y|_p = |x|_p \cdot |y|_p \tag{2}
$$

$$
|x+y|_p \le \max\{|x|_p, |y|_p\} \tag{3}
$$

The last property is the ultrametric triangle inequality.

2.2. The Bruhat-Tits tree for \mathbb{Q}_p

Unit disc: $\mathbb{D} = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\} = \mathbb{Z}_p$ is a ring.

Arbitrary closed disc: $B_{p^{-r}}(a) = \{x \in \mathbb{Q}_p \mid |x - a|_p \leq p^{-r}\}$

2.2. The Bruhat-Tits tree for \mathbb{Q}_p

Unit disc: $\mathbb{D} = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\} = \mathbb{Z}_p$ is a ring.

Arbitrary closed disc: $B_{p^{-r}}(a) = \{x \in \mathbb{Q}_p \mid |x - a|_p \leq p^{-r}\}$

The max. strict subdiscs of \mathbb{D} : $B_{p^{-1}}(0), B_{p^{-1}}(1), \ldots, B_{p^{-1}}(p-1)$ are a partition of D . Reason: $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0,\ldots,p-1\}$, and residue classes are discs.

2.2. The Bruhat-Tits tree for \mathbb{Q}_p

Unit disc: $\mathbb{D} = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\} = \mathbb{Z}_p$ is a ring.

Arbitrary closed disc: $B_{p^{-r}}(a) = \{x \in \mathbb{Q}_p \mid |x - a|_p \leq p^{-r}\}$

The max. strict subdiscs of \mathbb{D} : $B_{p^{-1}}(0), B_{p^{-1}}(1), \ldots, B_{p^{-1}}(p-1)$ are a partition of D. Reason: $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0,\ldots,p-1\}$, and residue classes are discs.

One minimal disc strictly containing \mathbb{D} : $B_p(0) = \{x \in \mathbb{Q}_p \mid |x|_p \leq p\}.$

Define a graph $\mathscr{T}_{\mathbb{Q}_p}$.

Vertices: the p -adic discs. Edges: strict inclusions $B_1 \subseteq B_2$ not allowing intermediate discs. Define a graph $\mathscr{T}_{\mathbb{Q}_p}$.

Vertices: the p -adic discs. Edges: strict inclusions $B_1 \subseteq B_2$ not allowing intermediate discs.

 \Rightarrow $\mathscr{T}_{\mathbb{Q}_p}$ is a $p+1$ -regular tree,

the *Bruhat-Tits tree* for \mathbb{Q}_p .

The Bruhat-Tits tree for \mathbb{Q}_2

Strictly descending chain of discs

 $B_1 \supseteq B_2 \supseteq \ldots$

converges to

$$
\bigcap_{n} B_n = x \in \mathbb{Q}_p,
$$

and corresponds to a halfline in $\mathcal{I}_{\mathbb{Q}_p}$

• • • . . .

Strictly descending chain of discs

$$
B_1 \supseteq B_2 \supseteq \dots
$$

converges to

$$
\bigcap_n B_n = x \in \mathbb{Q}_p,
$$

and corresponds to a halfline in $\mathscr{T}_{\mathbb{Q}_p}$

 $- \bullet - \cdot \cdot \cdot$

An end of $\mathscr{T}_{\mathbb{Q}_p}$ is given by halflines with all but finitely many vertices in common

Strictly descending chain of discs

$$
B_1 \supseteq B_2 \supseteq \dots
$$

converges to

$$
\bigcap_{n} B_n = x \in \mathbb{Q}_p,
$$

and corresponds to a halfline in $\mathcal{I}_{\mathbb{Q}_p}$

An end of $\mathscr{T}_{\mathbb{Q}_p}$ is given by halflines with all but finitely many vertices in common

 \bullet — \bullet — \bullet — \cdots

One extra end:

$$
B_1 \subseteq B_2 \subseteq \dots
$$

corresponds to the point ∞ on the *p*-adic projective line

$$
\mathbb{P}^1(\mathbb{Q}_p) = \mathbb{Q}_p \cup \{\infty\}.
$$

Result. Ends of
$$
\mathcal{I}_{\mathbb{Q}_p} \cong \mathbb{P}^1(\mathbb{Q}_p)
$$
.

Problem. $(\mathbb{Q}_p, |\cdot|_p)$ is totally disconnected.

Problem. $(\mathbb{Q}_p, |\cdot|_p)$ is totally disconnected.

Popular way out. Define new points:

Problem. $(\mathbb{Q}_p, |\cdot|_p)$ is totally disconnected.

Popular way out. Define new points:

corresponding to sequences of p -adic discs

 $B_1 \supseteq B_2 \supseteq \ldots$

of arbitrary real radii s.t. $B = \bigcap B_n$ is one of:

- 1. $x \in \mathbb{Q}_p$,
- 2. a closed p-adic disc with radius $r \in \mathbb{Q}_p|_p$,
- 3. a closed p-adic disc with radius $r \notin |Q_p|_p$,
- 4. empty.

Problem. $(\mathbb{Q}_p, |\cdot|_p)$ is totally disconnected.

Popular way out. Define new points:

corresponding to sequences of p -adic discs

 $B_1 \supseteq B_2 \supseteq \ldots$

of arbitrary real radii s.t. $B = \bigcap B_n$ is one of:

- 1. $x \in \mathbb{Q}_p$,
- 2. a closed p-adic disc with radius $r \in \left[\mathbb{Q}_p\right]_p$,
- 3. a closed p-adic disc with radius $r \notin |Q_p|_p$,
- 4. empty.

Type 1: classical points, types 2–4: generic points.

Theorem (Berkovich)

- 1. The new \mathbb{P}^1 is compact, hausdorff, arc-wise connected.
- 2. $\mathscr{T}_{\mathbb{Q}_p} \subseteq \mathbb{P}^1$ is a retraction of $\mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{Q}_p).$
- 3. Ends of $\mathscr{T}_{\mathbb{Q}_p} = \{$ classical points of $\mathbb{P}^1\}.$

3. p -adic dendrograms

Take a finite set $X\subseteq \mathbb{P}^1(\mathbb{Q}_p)$.

 $\rightsquigarrow X$ corresponds to a choice of ends in $\mathscr{T}_{\mathbb{Q}_p}.$

Definition. The smallest subtree $\mathscr{D}(X)$ of $\mathscr{T}_{\mathbb{Q}_p}$ whose ends are X is called the *p*-adic dendrogram for X .

3. p -adic dendrograms

Take a finite set $X\subseteq\mathbb{P}^1(\mathbb{Q}_p).$ $\rightsquigarrow X$ corresponds to a choice of ends in $\mathscr{T}_{\mathbb{Q}_p}.$

Definition. The smallest subtree $\mathscr{D}(X)$ of $\mathscr{T}_{\mathbb{Q}_p}$ whose ends are X is called the *p-adic dendrogram* for X .

Idea came from study of p -adic symmetries (G. Cornelissen, F. Kato, 2000)

Examples. 1. $X = \{0, 1, \infty\} \rightsquigarrow \mathscr{D}(X)$ consists of one vertex $v(0, 1, \infty)$ and three ends:

Examples. 1. $X = \{0, 1, \infty\} \rightsquigarrow \mathscr{D}(X)$ consists of one vertex $v(0, 1, \infty)$ and three ends:

2. $\{0, 1, \infty\} \subseteq X \subseteq \mathbb{N} \cup \{\infty\}$

 $\rightsquigarrow \mathscr{D}(X)$ is a rooted tree with root $v(0, 1, \infty)$.

Examples. 1. $X = \{0, 1, \infty\} \rightsquigarrow \mathscr{D}(X)$ consists of one vertex $v(0, 1, \infty)$ and three ends:

- 2. $\{0, 1, \infty\} \subseteq X \subseteq \mathbb{N} \cup \{\infty\}$
- $\rightsquigarrow \mathscr{D}(X)$ is a rooted tree with root $v(0, 1, \infty)$.
- 3. F. Murtagh's p -adic dendrogram:

Remark. All binary dendrograms are 2-adic dendrograms.

Arbitrary dendrograms. Either take larger prime p .

or: use a little algebra!

Extension fields of \mathbb{Q}_p .

Facts. 1. \mathbb{Q}_p has arbitrarily large finite extension fields $K \supseteq \mathbb{Q}_p$. 2. $|\cdot|_p$ extends uniquely to a norm $|\cdot|_K$ on $K \rightsquigarrow (K, |\cdot|_K)$ is a complete field, called p-adic number field.

Extension fields of \mathbb{Q}_p .

Facts. 1. \mathbb{Q}_p has arbitrarily large finite extension fields $K \supseteq \mathbb{Q}_p$. 2. $|\cdot|_p$ extends uniquely to a norm $|\cdot|_K$ on $K \rightsquigarrow (K, |\cdot|_K)$ is a complete field, called p-adic number field.

3. The *integers* of K are a ring $\mathcal{O}_K = \{x \in K \mid |x|_K \leq 1\}.$

4. There is a *uniformiser* $\pi \in \mathcal{O}_K$ s.t. $\mathcal{O}_K/\pi \mathcal{O}_K$ is a finite field with $q=p^f$ elements.

Extension fields of \mathbb{Q}_p .

Facts. 1. \mathbb{Q}_p has arbitrarily large finite extension fields $K \supseteq \mathbb{Q}_p$. 2. $|\cdot|_p$ extends uniquely to a norm $|\cdot|_K$ on $K \rightsquigarrow (K, |\cdot|_K)$ is a complete field, called p-adic number field.

3. The *integers* of K are a ring $\mathcal{O}_K = \{x \in K \mid |x|_K \leq 1\}.$

4. There is a *uniformiser* $\pi \in \mathcal{O}_K$ s.t. $\mathcal{O}_K/\pi \mathcal{O}_K$ is a finite field with $q=p^f$ elements.

5. The Bruhat-Tits tree \mathscr{T}_K is a $q+1$ -regular tree.

Consequence. $p = 2$ suffices.

Let in $\mathscr D$ the maximal number of children vertices be $n \geq 2$, \rightsquigarrow take K large enough such that $2^f \geq n$.

By number theory, such K exist.

(Take K unramified, i.e. dim $_{\mathbb{Q}_2} K = f.$)

Consequence. $p = 2$ suffices.

Let in \mathscr{D} the maximal number of children vertices be $n \geq 2$, \rightsquigarrow take K large enough such that $2^f \geq n$.

By number theory, such K exist.

(Take K unramified, i.e. dim $_{\mathbb{Q}_2} K = f.$)

 \rightsquigarrow From now on, "pretend" that $K = \mathbb{Q}_p$.

4. The space of dendrograms

Take $S = \{x_1, \ldots, x_n\} \subseteq \mathbb{P}^1(\mathbb{Q}_p)$ s.t. $x_1 = 0$, $x_2 = 1$, $x_3 = \infty$.

 $\sigma(X) = \mathscr{D}(S)$ is the *skeleton* of $X = \mathbb{P}^1 \setminus S.$

Call X an *n-pointed projective line* and S the *markings*.

4. The space of dendrograms

Take
$$
S = \{x_1, ..., x_n\} \subseteq \mathbb{P}^1(\mathbb{Q}_p)
$$
 s.t. $x_1 = 0$, $x_2 = 1$, $x_3 = \infty$.

 $\sigma(X) = \mathscr{D}(S)$ is the *skeleton* of $X = \mathbb{P}^1 \setminus S.$

Call X an *n-pointed projective line* and S the *markings*.

$$
\mathfrak{M}_n := \{ X = \mathbb{P}^1 \setminus S \mid S = \{ x_1 = 0, x_2 = 1, x_3 = \infty, \dots, x_n \}, \#S = n \}
$$

 $\mathfrak{D}_n := \{ \sigma(X) \mid X \in \mathfrak{M}_{n+1} \}$, the space of dendrograms for n data.

Facts. 1. dim $\mathfrak{M}_n = n - 3$.

- 2. $\mathfrak{D}_{n-1} \subseteq \mathfrak{M}_n$ is a real polyhedral complex of dimension $n-3$.
- 3. Maximal cells of \mathfrak{D}_{n-1} consist of the binary dendrograms.
- 4. Moving inside cell \leftrightarrow varying lengths of bounded edges.
- 5. Passing to neighbouring cells \leftrightarrow contracting edges.

Facts. 1. dim $\mathfrak{M}_n = n - 3$.

2. $\mathfrak{D}_{n-1} \subseteq \mathfrak{M}_n$ is a real polyhedral complex of dimension $n-3$.

- 3. Maximal cells of \mathfrak{D}_{n-1} and consist of the binary dendrograms.
- 4. Moving inside cell \leftrightarrow varying lengths of bounded edges.
- 5. Passing to neighbouring cells \leftrightarrow contracting edges.

Remark. $n-3 = \#$ "free markings" which move within \mathbb{P}^1 without colliding.

Examples. 1. $\mathfrak{M}_3 = \mathfrak{D}_2 = \{pt\}.$

2. \mathfrak{M}_4 has one free marking $\lambda\in \mathbb{P}^1(\mathbb{Q}_p)\setminus\{0,1,\infty\}$ $\rightsquigarrow \mathfrak{M}_4 = \mathbb{P}^1 \setminus \{0,1,\infty\}.$

Examples. 1. $\mathfrak{M}_3 = \mathfrak{D}_2 = \{pt\}.$

2. \mathfrak{M}_4 has one free marking $\lambda\in \mathbb{P}^1(\mathbb{Q}_p)\setminus\{0,1,\infty\}$ $\rightsquigarrow \mathfrak{M}_4 = \mathbb{P}^1 \setminus \{0,1,\infty\}.$

Examples. 1. $\mathfrak{M}_3 = \mathfrak{D}_2 = \{pt\}.$

2. \mathfrak{M}_4 has one free marking $\lambda\in \mathbb{P}^1(\mathbb{Q}_p)\setminus\{0,1,\infty\}$ $\rightsquigarrow \mathfrak{M}_4 = \mathbb{P}^1 \setminus \{0,1,\infty\}.$

Definition. A family of dendrograms with n data over a space Y is a map $Y \to \mathfrak{D}_n$ from some *p*-adic space Y.

Example. $Y = \{y_1, \ldots, y_T\}$. Interpret $t \in \{1, \ldots, T\}$ as time.

 \rightsquigarrow A family $Y \rightarrow \mathfrak{D}_n$ is a time series of n non-colliding particles.

Definition. A family of dendrograms with n data over a space Y is a map $Y \to \mathfrak{D}_n$ from some p-adic space Y.

Example. $Y = \{y_1, \ldots, y_T\}$. Interpret $t \in \{1, \ldots, T\}$ as time.

 \rightsquigarrow A family $Y \rightarrow \mathfrak{D}_n$ is a time series of n non-colliding particles.

Particles with collisions: \rightsquigarrow compactify \mathfrak{M}_n .

But this is another story ...

5. Distributions on dendrograms

Given dendrogram $\mathscr{D}(S)$ for data $S = \{x_1, \ldots, x_n\}$.

Want to insert further datum $x \notin S$ into classification scheme.

5. Distributions on dendrograms

Given dendrogram $\mathscr{D}(S)$ for data $S = \{x_1, \ldots, x_n\}$.

Want to insert further datum $x \notin S$ into classification scheme.

Idea: Classifier \rightsquigarrow Assign probabilities to vertices of $\mathscr{D}(S)$ depending on x .

5. Distributions on dendrograms

Given dendrogram $\mathscr{D}(S)$ for data $S = \{x_1, \ldots, x_n\}$.

Want to insert further datum $x \notin S$ into classification scheme.

Idea: Classifier \rightsquigarrow Assign probabilities to vertices of $\mathscr{D}(S)$ depending on x .

Result: A family of dendrograms for $S \cup \{x\}$ with variable x $+$ a probability distribution.

Definition. A universal p-adic classifier C for n given points is a probability distribution on \mathfrak{M}_{n+1} .

Borel σ -algebra on \mathfrak{M}_{n+1} generated by the Berkovich open sets.

Definition. A universal p-adic classifier C for n given points is a probability distribution on \mathfrak{M}_{n+1} .

Borel σ -algebra on \mathfrak{M}_{n+1} generated by the Berkovich open sets.

Let $X \in \mathfrak{M}_{n+1}$ with skeleton $\sigma(X) \in \mathfrak{D}_n$

 $\sim\hspace{-0.5mm}\sim$ ${\cal C}$ induces a measure on $X=\mathbb{P}^1\setminus S$

 \rightsquigarrow probability distribution on $\sigma(X) = \mathscr{D}(S)$ (renormalisation)

Definition. A *universal p-adic classifier C for n given points* is a probability distribution on \mathfrak{M}_{n+1} .

Borel σ -algebra on \mathfrak{M}_{n+1} generated by the Berkovich open sets.

Let $X \in \mathfrak{M}_{n+1}$ with skeleton $\sigma(X) \in \mathfrak{D}_n$

 $\sim\mathcal{C}$ induces a measure on $X=\mathbb{P}^1\setminus S$

 \rightsquigarrow probability distribution on $\sigma(X)\mathscr{D}(S)$ (renormalisation)

The like for families of dendrograms.

6. Hidden vertices

Definition. A vertex v in a dendrogram \mathscr{D} is hidden, if all edges emanating from v are bounded.

I.e. the cluster corresponding to v is non-trivially composed of non-singleton subclusters.

Theorem. Let $\mathscr{D} \in \mathfrak{D}_n$. Then

$$
v^h \le \frac{n+1}{4} - b_0^h + 1\tag{4}
$$

$$
b_0^h \le \frac{n-4}{2} \tag{5}
$$

and the bound in (5) is sharp.

$$
v^h := \# \text{ of hidden vertices in } \mathcal{D}
$$
\n
$$
\mathcal{D}^h := \text{the subforest of } \mathcal{D} \text{ spanned by all hidden vertices}
$$
\n
$$
b_0^h := \# \text{ connected components of } \mathcal{D}^h,
$$
\n
$$
\text{measures the internal structure of } \mathcal{D}.
$$

3

Proof. Inductive pasting of trees. ✷

7. Conclusions

- Geometric foundation towards p -adic data encoding.
- Encoding $=$ embedding dendrogram into Bruhat-Tits tree.
- Embedding uniquely determined by p -adic data representation.

7. Conclusions

- Geometric foundation towards p -adic data encoding.
- Encoding $=$ embedding dendrogram into Bruhat-Tits tree.
- Embedding uniquely determined by p -adic data representation.
- $\mathfrak{D}_n \subseteq \mathfrak{M}_{n+1}$
- Moving particles \leftrightarrow family of dendrograms.
- Classifiers via measures on \mathfrak{M}_n .

7. Conclusions

- Geometric foundation towards p -adic data encoding.
- Encoding $=$ embedding dendrogram into Bruhat-Tits tree.
- Embedding uniquely determined by p -adic data representation.
- $\mathfrak{D}_n \subseteq \mathfrak{M}_{n+1}$
- Moving particles \leftrightarrow family of dendrograms.
- Classifiers via measures on \mathfrak{M}_n .
- Bounds for $#$ hidden vertices and components.

8. Epilogue: symmetric dendrograms

5-adic icosahedron (G. Cornelissen & F. Kato)

3-adic icosahedron (G. Cornelissen & F. Kato)

2-adic icosahedron (G. Cornelissen & F. Kato)