Families of dendrograms
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1. Introduction

e Dendrograms are ultrametric spaces

e Ultrametricity is pervasive (F. Murtagh)

e p-adic geometry = natural environment for ultrametricity



2. Some p-adic geometry
2.1. Eucledian vs. p-adic geometry

Euclidean geometry.

e Mmodelled on the real numbers R
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2. Some p-adic geometry
2.1. Eucledian vs. p-adic geometry

Euclidean geometry.
e modelled on the real numbers R

e decimal system

@)

Z ay107%, ayp € {0,...,9}

r=—m

e R = completion of rationals Q w.r.t. absolute norm:

x, x>0
x| =
—x, x=<0



2. Some p-adic geometry
2.1. Eucledian vs. p-adic geometry
p-adic geometry.

Let p be a prime number.



2. Some p-adic geometry
2.1. Eucledian vs. p-adic geometry
p-adic geometry.

Let p be a prime number.

p~r®), x#0

e p-adic normon Q: |z|p = 0 otherwise

vp(x) = vp(a) — vp(h).

vp(n) = multiplicity with which p divides integer n:

xZ%,a,bEZ,

n =pyp(n) cu, p fu.



2. Some p-adic geometry
2.1. Eucledian vs. p-adic geometry
p-adic geometry.

Let p be a prime number.

pe(®), x#0

e p-adic norm on Q: |z|p = 0 otherwise

o — %, a,b €7,
vp(x) = vp(a) — vp(b).
vp(n) = multiplicity with which p divides integer n:

n=p*™ . pfu

e Q, = completion w.r.t. |-|p

@,

= T = Za,]/py, CLVE{O,...,p—].}

r=m
p-adic expansion of p-adic numbers.



Remark. |-|, is an ultrametric:

|z - y|p — |33|p' |?J|p (2)
lz + ylp < max{|z|p, |y|p} (3)

The last property is the ultrametric triangle inequality.



2.2. The Bruhat-Tits tree for Q,
Unit disc: D={2 € Qp | |z|]p <1} =Z, is a ring.

Arbitrary closed disc: B,-(a) ={z € Qp ||z —alp <p~"}



2.2. The Bruhat-Tits tree for Q,

Unit disc: D={2 € Qp | |z|]p <1} =Z, is a ring.

Arbitrary closed disc: B, +(a) ={z € Qp | |z —alp <p™"}

The max. strict subdiscs of D: Bp_l(O),Bp_l(l), . .,Bp_l(p —1)
are a partition of D.

Reason: Zy,/pZy, = Fp = Z/pZ = {0,...,p—1}, and residue
classes are discs.
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2.2. The Bruhat-Tits tree for Q,

Unit disc: D={2 € Qp | |z|]p <1} =Z, is a ring.

Arbitrary closed disc: B, r(a) ={z € Qp | |z —alp <p™"}

The max. strict subdiscs of D: Bp_l(O),Bp_l(l), .. .,Bp_l(p —1)
are a partition of D.

Reason: Zp/pZy = Fp = Z/pZ = {0,...,p—1}, and residue

classes are discs.

One minimal disc strictly containing D: Bp(0) = {x € Qp | |x|p < p}.
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Define a graph 7@]0.

Vertices: the p-adic discs.
Edges: strict inclusions By C B> not allowing intermediate discs.
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Define a graph ﬂ@p.

Vertices: the p-adic discs.
Edges: strict inclusions By € B, not allowing intermediate discs.

= ﬂ@p is a p+ 1-regular tree,

the Bruhat-Tits tree for Qp.
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AA  AA

The Bruhat-Tits tree for Q-
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Strictly descending chain of discs

B{DBsD...

converges to
ﬂBn =T C Qpa
n

and corresponds to a halfline in ﬁQp
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Strictly descending chain of discs

B{D2B>D...

converges to
ﬂBn =T cC Qpa
mn

and corresponds to a halfline in y@p

An end of ﬂQp is given by halflines with all but finitely many
vertices in common
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Strictly descending chain of discs

B12ByD...

converges to
mn
and corresponds to a halfline in ﬁ@p

An end of YQP is given by halflines with all but finitely many
vertices in common

One extra end:
B1 C By C...

corresponds to the point oo on the p-adic projective line

P1(Qp) = Qp U {o}.
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Result. Ends of I & PL(Q)).

18



2.3. Berkovich Topology

Problem. (Qyp,|-|p) is totally disconnected.
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2.3. Berkovich Topology
Problem. (Qyp,|-|p) is totally disconnected.

Popular way out. Define new points:

20



2.3. Berkovich Topology
Problem. (Qp,|-|p) is totally disconnected.
Popular way out. Define new points:

corresponding to sequences of p-adic discs
By DBy D...
of arbitrary real radii s.t. B =By is one of:
1. x € Qp,
2. a closed p-adic disc with radius r € |Qp|p,
3. a closed p-adic disc with radius r & |Qp|p,
4

. empty.
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2.3. Berkovich Topology
Problem. (Qyp,|-|p) is totally disconnected.
Popular way out. Define new points:

corresponding to sequences of p-adic discs
B12BsD...
of arbitrary real radii s.t. B = () By is one of:
1. x € Qp,
2. a closed p-adic disc with radius r € |Qp|p,
3. a closed p-adic disc with radius r & |Qp|p,

4. empty.

Type 1: classical points, types 2—4: generic points.
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Theorem (Berkovich)

1. The new P! is compact, hausdorff, arc-wise connected.
2. Ty, C Pl is a retraction of P1\ P1(Qy).

3. Ends of Jp, = {classical points of P'}.
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3. p-adic dendrograms

Take a finite set X C P1(Qy).
~» X corresponds to a choice of ends in ﬂQp.

Definition. The smallest subtree 2(X) of 5@]9 whose ends are
X is called the p-adic dendrogram for X.
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3. p-adic dendrograms

Take a finite set X C P1(Qy).
~» X corresponds to a choice of ends in 9@;;-

Definition. The smallest subtree 2(X) of ﬂ@p whose ends are
X is called the p-adic dendrogram for X.

Idea came from study of p-adic symmetries (G. Cornelissen, F.
Kato, 2000)
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Examples. 1. X = {0,1,00} ~ Z(X) consists of one vertex
v(0,1,00) and three ends:
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Examples. 1. X = {0,1,0} ~ Z(X) consists of one vertex
v(0,1,00) and three ends:

2. {0,1,00} C X C NU {0}

~ 9(X) is a rooted tree with root v(0, 1, c0).
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Examples. 1. X = {0,1, 0} ~ Z(X) consists of one vertex
v(0,1,00) and three ends:

2. {0,1,00} € X CNU{o0o}

~ 9(X) is a rooted tree with root v(0, 1, c0).

3. F. Murtagh’s p-adic dendrogram:
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()

x1

0

x5 =0-2041.2240.2341.2%.
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Remark. All binary dendrograms are 2-adic dendrograms.

Arbitrary dendrograms. Either take larger prime p.

or: use a little algebral
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Extension fields of Q.

Facts. 1. Qp, has arbitrarily large finite extension fields K DO Qy.

2. |-|p extends uniquely to a norm |- |g on K ~ (K,|-|k) is a
complete field, called p-adic number field.
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Extension fields of Q.

Facts. 1. Qp has arbitrarily large finite extension fields K O Q.

2. |-|p extends uniquely to a norm |- |g on K ~ (K,|-|g) is a
complete field, called p-adic number field.

3. The integers of K are a ring O ={z € K | || < 1}.

4. There is a uniformiser m € Ok s.t. O /mOf is a finite field
with ¢ = p/ elements.
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Extension fields of Q.

Facts. 1. Qp, has arbitrarily large finite extension fields K DO Qy.

2. |-|p extends uniquely to a norm |- |g on K ~ (K,||k) is a
complete field, called p-adic number field.

3. The integers of K are a ring O ={x € K | || < 1}.

4. There is a uniformiser m € Ok s.t. O /7O is a finite field
with ¢ = p/ elements.

5. The Bruhat-Tits tree % is a g+ 1-regular tree.
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Consequence. p = 2 suffices.

Let in ¥ the maximal number of children vertices be n > 2,
~» take K large enough such that 2/ > n.

By number theory, such K exist.

(Take K unramified, i.e. dimg, K = f.)
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Consequence. p = 2 suffices.

Let in ¥ the maximal number of children vertices be n > 2,

~» take K large enough such that 2/ > n.

By number theory, such K exist.

(Take K unramified, i.e. dimg, K = f.)

~ From now on, “pretend” that K = Qy.
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4. The space of dendrograms
Take S = {x1,...,xn} C Pl(@p) st.x1 =0, 20 =1, x3 = 0.

o(X) = 2(S) is the skeleton of X =P\ S.

Call X an n-pointed projective line and S the markings.
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4. The space of dendrograms
Take S ={z1,...,xn} C Pl(Qp) s.t. z1 =0, xp =1, 3 = 0.

o(X) = 2(8) is the skeleton of X =P\ S.

Call X an n-pointed projective line and S the markings.
My = {X =PI\ S|S={z1=0,20=1,23 =00,...,xn}, #S =n}

Dn = {o(X) | X € M,41}, the space of dendrograms for n data.
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Facts. 1. dmd,, = n — 3.

2.

3.

D,_1 C M, is a real polyhedral complex of dimension n — 3.
Maximal cells of ©,,_1 consist of the binary dendrograms.

Moving inside cell «— varying lengths of bounded edges.

. Passing to neighbouring cells «+» contracting edges.
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Facts. 1. dim9, =n — 3.

2. 9,1 €M, is a real polyhedral complex of dimension n — 3.
3. Maximal cells of ®,,_1 and consist of the binary dendrograms.
4. Moving inside cell < varying lengths of bounded edges.

5. Passing to neighbouring cells «<— contracting edges.

Remark. n— 3 = # “free markings’ which move within Pl with-
out colliding.
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Examples. 1. 93 = 9D, = {pt}.

2. M4 has one free marking A € P1(Qp) \ {0,1, 00}
~ M4 =P\ {0,1, 0}.
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Examples. 1. M3 = D, = {pt}.

2. M4 has one free marking A € P1(Qp) \ {0,1, 00}
~ M4 =P\ {0,1,00}.

~ B3 = ° , where

42



Examples. 1. M3 = D, = {pt}.

2. M, has one free marking X € P1(Qp) \ {0, 1, 00}
~ My =P\ {0,1,00}.

~ B3 = ° , where
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Definition. A family of dendrograms with n data over a space
Y isamap Y — 3, from some p-adic space Y.

Example. Y = {y1,...,yr}. Interpret t € {1,...,T} as time.

~ A family Y — 3, is a time series of n non-colliding particles.
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Definition. A family of dendrograms with n data over a space
YisamapyY — 9, from some p-adic space Y.

Example. Y ={y1,...,yr}. Interpret t € {1,...,T} as time.
~ A family ¥ — ®, is a time series of n non-colliding particles.

Particles with collisions: ~» compactify 91,.

But this is another story . ..
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5. Distributions on dendrograms

Given dendrogram Z(S) for data S = {x1,...,zn}.

Want to insert further datum = ¢ S into classification scheme.
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5. Distributions on dendrograms

Given dendrogram Z(S) for data S = {z1,...,xn}.

Want to insert further datum z ¢ S into classification scheme.

Idea: Classifier ~» Assign probabilities to vertices of Z(S) de-
pending on «x.
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5. Distributions on dendrograms

Given dendrogram Z(S) for data S = {x1,...,zn}.

Want to insert further datum z € S into classification scheme.

Idea: Classifier ~» Assign probabilities to vertices of Z2(S) de-
pending on x.

Result: A family of dendrograms for S U {z} with variable x
-+ a probability distribution.
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Definition. A universal p-adic classifier C for n given points is a
probability distribution on 91,4 .

Borel o-algebra on 9,41 generated by the Berkovich open sets.
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Definition. A universal p-adic classifier C for n given points is a
probability distribution on 9,4 1.

Borel o-algebra on Sﬁn_H generated by the Berkovich open sets.

Let X € M, 41 with skeleton o(X) € Dp
~» C induces a measure on X =P1\ §

~» probability distribution on o(X) = 2(S) (renormalisation)
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Definition. A universal p-adic classifier C for n given points is a
probability distribution on 9,4 1.

Borel o-algebra on 2,41 generated by the Berkovich open sets.

Let X € M,,41 with skeleton o(X) € Dnp,
~» C induces a measure on X =P1\ §

~» probability distribution on o(X)Z2(S) (renormalisation)

The like for families of dendrograms.
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6. Hidden vertices

Definition. A vertex v in a dendrogram ¥ is hidden, if all edges
emanating from v are bounded.

I.e. the cluster corresponding to v is non-trivially composed of
non-singleton subclusters.
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Theorem. Let ¥ €7%,,. Then

he ML g (4)

v

—4
b < (5)

and the bound in (5) is sharp.

v" 1= # of hidden vertices in 2
9" := the subforest of 2 spanned by all hidden vertices

bE .= # connected components of 2",
measures the internal structure of 9.

Proof. Inductive pasting of trees. O
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7. Conclusions
e Geometric foundation towards p-adic data encoding.
e Encoding = embedding dendrogram into Bruhat-Tits tree.

e Embedding uniquely determined by p-adic data representation.
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/. Conclusions

e Geometric foundation towards p-adic data encoding.

e Encoding = embedding dendrogram into Bruhat-Tits tree.

e Embedding uniquely determined by p-adic data representation.
® Dn CMyyq

e Moving particles «— family of dendrograms.

e Classifiers via measures on I,,.
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7. Conclusions

e Geometric foundation towards p-adic data encoding.

e Encoding = embedding dendrogram into Bruhat-Tits tree.
e Embedding uniquely determined by p-adic data representation.
e Dp CMy4q

e Moving particles «— family of dendrograms.
e Classifiers via measures on I,,.

e Bounds for # hidden vertices and components.
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8. Epilogue: symmetric dendrograms

s 3 38 g3
2222,
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5-adic icosahedron (G. Cornelissen & F. Kato)
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3 2223 5 5

D3 = \\‘, ‘

3-adic icosahedron (G. Cornelissen & F. Kato)
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2-adic icosahedron (G. Cornelissen & F. Kato)
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