Families of dendrograms

Patrick Erik Bradley

1. Introduction

- Dendrograms are ultrametric spaces
- Ultrametricity is pervasive (F. Murtagh)
- *p*-adic geometry = natural environment for ultrametricity

2.1. Eucledian vs. *p*-adic geometry

Euclidean geometry.

 \bullet modelled on the real numbers $\mathbb R$

2.1. Eucledian vs. *p*-adic geometry

Euclidean geometry.

- \bullet modelled on the real numbers $\mathbb R$
- decimal system

$$\sum_{\nu=m}^{\infty} a_{\nu} 10^{-\nu}, \quad a_{\nu} \in \{0, \dots, 9\}$$

2.1. Eucledian vs. *p*-adic geometry

Euclidean geometry.

- \bullet modelled on the real numbers $\mathbb R$
- decimal system

$$\sum_{\nu=m}^{\infty} a_{\nu} 10^{-\nu}, \quad a_{\nu} \in \{0, \dots, 9\}$$

• \mathbb{R} = completion of rationals \mathbb{Q} w.r.t. absolute norm:

$$|x| = \begin{cases} x, & x \ge 0\\ -x, & x < 0 \end{cases}$$

2.1. Eucledian vs. *p*-adic geometry

p-adic geometry.

Let p be a prime number.

2.1. Eucledian vs. *p*-adic geometry

p-adic geometry.

Let p be a prime number.

• p-adic norm on
$$\mathbb{Q}$$
: $|x|_p = \begin{cases} p^{-\nu_p(x)}, & x \neq 0\\ 0 & \text{otherwise} \end{cases}$ $x = \frac{a}{b}, a, b \in \mathbb{Z},$
 $\nu_p(x) = \nu_p(a) - \nu_p(b).$

 $\nu_p(n) =$ multiplicity with which p divides integer n:

$$n = p^{\nu_p(n)} \cdot u, \quad p \not\mid u.$$

2.1. Eucledian vs. *p*-adic geometry

p-adic geometry.

Let p be a prime number.

•
$$p$$
-adic norm on \mathbb{Q} : $|x|_p = \begin{cases} p^{-\nu_p(x)}, & x \neq 0\\ 0 & \text{otherwise} \end{cases}$
 $v_p(x) = \nu_p(a) - \nu_p(b).$
 $\nu_p(n) = \text{multiplicity with which } p \text{ divides integer } n:$
 $n = p^{\nu_p(n)} \cdot u, \quad p \not\mid u.$

• $\mathbb{Q}_p = \text{completion w.r.t. } |\cdot|_p$

$$\Rightarrow x = \sum_{\nu=m}^{\infty} a_{\nu} p^{\nu}, \quad a_{\nu} \in \{0, \dots, p-1\}$$

p-adic expansion of *p*-adic numbers.

Remark. $|\cdot|_p$ is an ultrametric:

$$|x|_p \ge 0$$
, and $|x|_p = 0 \Leftrightarrow x = 0$ (1)

$$|x \cdot y|_p = |x|_p \cdot |y|_p \tag{2}$$

$$|x+y|_p \le \max\{|x|_p, |y|_p\}$$
 (3)

The last property is the *ultrametric triangle inequality*.

2.2. The Bruhat-Tits tree for \mathbb{Q}_p

Unit disc: $\mathbb{D} = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\} = \mathbb{Z}_p$ is a ring.

Arbitrary closed disc: $B_{p^{-r}}(a) = \{x \in \mathbb{Q}_p \mid |x - a|_p \le p^{-r}\}$

2.2. The Bruhat-Tits tree for \mathbb{Q}_p

Unit disc: $\mathbb{D} = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\} = \mathbb{Z}_p$ is a ring.

Arbitrary closed disc: $B_{p^{-r}}(a) = \{x \in \mathbb{Q}_p \mid |x - a|_p \le p^{-r}\}$

The max. strict subdiscs of \mathbb{D} : $B_{p^{-1}}(0), B_{p^{-1}}(1), \ldots, B_{p^{-1}}(p-1)$ are a partition of \mathbb{D} . Reason: $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, \ldots, p-1\}$, and residue classes are discs.

2.2. The Bruhat-Tits tree for \mathbb{Q}_p

Unit disc: $\mathbb{D} = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\} = \mathbb{Z}_p$ is a ring.

Arbitrary closed disc: $B_{p^{-r}}(a) = \{x \in \mathbb{Q}_p \mid |x - a|_p \le p^{-r}\}$

The max. strict subdiscs of \mathbb{D} : $B_{p^{-1}}(0), B_{p^{-1}}(1), \ldots, B_{p^{-1}}(p-1)$ are a partition of \mathbb{D} . Reason: $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, \ldots, p-1\}$, and residue classes are discs.

One minimal disc strictly containing \mathbb{D} : $B_p(0) = \{x \in \mathbb{Q}_p \mid |x|_p \leq p\}.$

Define a graph $\mathscr{T}_{\mathbb{Q}_p}$.

Vertices: the *p*-adic discs.

Edges: strict inclusions $B_1 \subseteq B_2$ not allowing intermediate discs.

Define a graph $\mathscr{T}_{\mathbb{Q}_p}$.

Vertices: the *p*-adic discs. Edges: strict inclusions $B_1 \subseteq B_2$ not allowing intermediate discs.

 $\Rightarrow \mathscr{T}_{\mathbb{Q}_p}$ is a p+1-regular tree,

the *Bruhat-Tits tree* for \mathbb{Q}_p .

The Bruhat-Tits tree for \mathbb{Q}_2

Strictly descending chain of discs

$$B_1 \supseteq B_2 \supseteq \ldots$$

converges to

$$\bigcap_n B_n = x \in \mathbb{Q}_p,$$

and corresponds to a halfline in $\mathscr{T}_{\mathbb{Q}_p}$

ullet — ullet — ullet — \cdots

Strictly descending chain of discs

$$B_1 \supseteq B_2 \supseteq \ldots$$

converges to

$$\bigcap_{n} B_n = x \in \mathbb{Q}_p,$$

and corresponds to a halfline in $\mathscr{T}_{\mathbb{Q}_p}$

 $\bullet - - \bullet - - \bullet - \cdots$

An end of $\mathscr{T}_{\mathbb{Q}_p}$ is given by halflines with all but finitely many vertices in common

Strictly descending chain of discs

$$B_1 \supseteq B_2 \supseteq \ldots$$

converges to

$$\bigcap_{n} B_n = x \in \mathbb{Q}_p,$$

and corresponds to a halfline in $\mathscr{T}_{\mathbb{Q}_p}$

An end of $\mathscr{T}_{\mathbb{Q}_p}$ is given by halflines with all but finitely many vertices in common

 $) \longrightarrow lacksquare$

One extra end:

$$B_1 \subseteq B_2 \subseteq \ldots$$

corresponds to the point ∞ on the *p*-adic projective line

$$\mathbb{P}^1(\mathbb{Q}_p) = \mathbb{Q}_p \cup \{\infty\}.$$

Result. Ends of
$$\mathscr{T}_{\mathbb{Q}_p} \cong \mathbb{P}^1(\mathbb{Q}_p)$$
.

Problem. $(\mathbb{Q}_p, |\cdot|_p)$ is totally disconnected.

Problem. $(\mathbb{Q}_p, |\cdot|_p)$ is totally disconnected.

Popular way out. Define new points:

Problem. $(\mathbb{Q}_p, |\cdot|_p)$ is totally disconnected.

Popular way out. Define new points:

corresponding to sequences of p-adic discs

 $B_1 \supseteq B_2 \supseteq \ldots$

of arbitrary real radii s.t. $B = \bigcap B_n$ is one of:

1.
$$x \in \mathbb{Q}_p$$
,

- 2. a closed *p*-adic disc with radius $r \in |\mathbb{Q}_p|_p$,
- 3. a closed *p*-adic disc with radius $r \notin |\mathbb{Q}_p|_p$,
- 4. empty.

Problem. $(\mathbb{Q}_p, |\cdot|_p)$ is totally disconnected.

Popular way out. Define new points:

corresponding to sequences of p-adic discs

 $B_1 \supseteq B_2 \supseteq \ldots$

of arbitrary real radii s.t. $B = \bigcap B_n$ is one of:

- 1. $x \in \mathbb{Q}_p$,
- 2. a closed *p*-adic disc with radius $r \in |\mathbb{Q}_p|_p$,
- 3. a closed *p*-adic disc with radius $r \notin |\mathbb{Q}_p|_p$,
- 4. empty.

Type 1: *classical points*, types 2–4: *generic points*.

Theorem (Berkovich)

- 1. The new \mathbb{P}^1 is compact, hausdorff, arc-wise connected.
- 2. $\mathscr{T}_{\mathbb{Q}_p} \subseteq \mathbb{P}^1$ is a retraction of $\mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{Q}_p)$.
- 3. Ends of $\mathscr{T}_{\mathbb{Q}_p} = \{ \text{classical points of } \mathbb{P}^1 \}.$

3. *p*-adic dendrograms

Take a finite set $X \subseteq \mathbb{P}^1(\mathbb{Q}_p)$.

 $\rightsquigarrow X$ corresponds to a choice of ends in $\mathscr{T}_{\mathbb{Q}_p}$.

Definition. The smallest subtree $\mathscr{D}(X)$ of $\mathscr{T}_{\mathbb{Q}_p}$ whose ends are X is called the *p*-adic dendrogram for X.

3. *p*-adic dendrograms

Take a finite set $X \subseteq \mathbb{P}^1(\mathbb{Q}_p)$.

 $\rightsquigarrow X$ corresponds to a choice of ends in $\mathscr{T}_{\mathbb{Q}_p}$.

Definition. The smallest subtree $\mathscr{D}(X)$ of $\mathscr{T}_{\mathbb{Q}_p}$ whose ends are X is called the *p*-adic dendrogram for X.

Idea came from study of p-adic symmetries (G. Cornelissen, F. Kato, 2000)

Examples. 1. $X = \{0, 1, \infty\} \rightsquigarrow \mathscr{D}(X)$ consists of one vertex $v(0, 1, \infty)$ and three ends:

Examples. 1. $X = \{0, 1, \infty\} \rightsquigarrow \mathscr{D}(X)$ consists of one vertex $v(0, 1, \infty)$ and three ends:

2. $\{0, 1, \infty\} \subseteq X \subseteq \mathbb{N} \cup \{\infty\}$

 $\sim \mathscr{D}(X)$ is a rooted tree with root $v(0, 1, \infty)$.

Examples. 1. $X = \{0, 1, \infty\} \rightsquigarrow \mathscr{D}(X)$ consists of one vertex $v(0, 1, \infty)$ and three ends:

- 2. $\{0, 1, \infty\} \subseteq X \subseteq \mathbb{N} \cup \{\infty\}$
- $\rightsquigarrow \mathscr{D}(X)$ is a rooted tree with root $v(0, 1, \infty)$.
- 3. F. Murtagh's *p*-adic dendrogram:

Remark. All binary dendrograms are 2-adic dendrograms.

Arbitrary dendrograms. Either take larger prime *p*.

or: use a little algebra!

Extension fields of \mathbb{Q}_p .

Facts. 1. \mathbb{Q}_p has arbitrarily large finite extension fields $K \supseteq \mathbb{Q}_p$. 2. $|\cdot|_p$ extends uniquely to a norm $|\cdot|_K$ on $K \rightsquigarrow (K, |\cdot|_K)$ is a complete field, called *p*-adic number field.

Extension fields of \mathbb{Q}_p .

Facts. 1. \mathbb{Q}_p has arbitrarily large finite extension fields $K \supseteq \mathbb{Q}_p$. 2. $|\cdot|_p$ extends uniquely to a norm $|\cdot|_K$ on $K \rightsquigarrow (K, |\cdot|_K)$ is a complete field, called *p*-adic number field.

3. The *integers* of K are a ring $\mathcal{O}_K = \{x \in K \mid |x|_K \leq 1\}$.

4. There is a *uniformiser* $\pi \in \mathcal{O}_K$ s.t. $\mathcal{O}_K/\pi \mathcal{O}_K$ is a finite field with $q = p^f$ elements.

Extension fields of \mathbb{Q}_p .

Facts. 1. \mathbb{Q}_p has arbitrarily large finite extension fields $K \supseteq \mathbb{Q}_p$. 2. $|\cdot|_p$ extends uniquely to a norm $|\cdot|_K$ on $K \rightsquigarrow (K, |\cdot|_K)$ is a complete field, called *p*-adic number field.

3. The *integers* of K are a ring $\mathcal{O}_K = \{x \in K \mid |x|_K \leq 1\}$.

4. There is a *uniformiser* $\pi \in \mathcal{O}_K$ s.t. $\mathcal{O}_K/\pi \mathcal{O}_K$ is a finite field with $q = p^f$ elements.

5. The Bruhat-Tits tree \mathscr{T}_K is a q + 1-regular tree.

Consequence. p = 2 suffices.

Let in \mathscr{D} the maximal number of children vertices be $n \geq 2$, \rightsquigarrow take K large enough such that $2^f \geq n$.

By number theory, such K exist.

(Take K unramified, i.e. $\dim_{\mathbb{Q}_2} K = f$.)

Consequence. p = 2 suffices.

Let in \mathscr{D} the maximal number of children vertices be $n \geq 2$, \rightsquigarrow take K large enough such that $2^f \geq n$.

By number theory, such K exist.

(Take K unramified, i.e. $\dim_{\mathbb{Q}_2} K = f$.)

 \rightsquigarrow From now on, "pretend" that $K = \mathbb{Q}_p$.

4. The space of dendrograms

Take $S = \{x_1, ..., x_n\} \subseteq \mathbb{P}^1(\mathbb{Q}_p)$ s.t. $x_1 = 0, x_2 = 1, x_3 = \infty$.

 $\sigma(X) = \mathscr{D}(S)$ is the *skeleton* of $X = \mathbb{P}^1 \setminus S$.

Call X an n-pointed projective line and S the markings.

4. The space of dendrograms

Take
$$S = \{x_1, ..., x_n\} \subseteq \mathbb{P}^1(\mathbb{Q}_p)$$
 s.t. $x_1 = 0, x_2 = 1, x_3 = \infty$.

 $\sigma(X) = \mathscr{D}(S)$ is the *skeleton* of $X = \mathbb{P}^1 \setminus S$.

Call X an n-pointed projective line and S the markings.

$$\mathfrak{M}_n := \{ X = \mathbb{P}^1 \setminus S \mid S = \{ x_1 = 0, x_2 = 1, x_3 = \infty, \dots, x_n \}, \ \#S = n \}$$

 $\mathfrak{D}_n := \{ \sigma(X) \mid X \in \mathfrak{M}_{n+1} \}$, the space of dendrograms for n data.

Facts. 1. dim $\mathfrak{M}_n = n - 3$.

- 2. $\mathfrak{D}_{n-1} \subseteq \mathfrak{M}_n$ is a real polyhedral complex of dimension n-3.
- 3. Maximal cells of \mathfrak{D}_{n-1} consist of the binary dendrograms.
- 4. Moving inside cell \leftrightarrow varying lengths of bounded edges.
- 5. Passing to neighbouring cells \leftrightarrow contracting edges.

Facts. 1. dim $\mathfrak{M}_n = n - 3$.

2. $\mathfrak{D}_{n-1} \subseteq \mathfrak{M}_n$ is a real polyhedral complex of dimension n-3.

- 3. Maximal cells of \mathfrak{D}_{n-1} and consist of the binary dendrograms.
- 4. Moving inside cell \leftrightarrow varying lengths of bounded edges.
- 5. Passing to neighbouring cells \leftrightarrow contracting edges.

Remark. n-3 = # "free markings" which move within \mathbb{P}^1 without colliding.

Examples. 1. $\mathfrak{M}_3 = \mathfrak{D}_2 = \{pt\}.$

2. \mathfrak{M}_4 has one free marking $\lambda \in \mathbb{P}^1(\mathbb{Q}_p) \setminus \{0, 1, \infty\}$ $\rightsquigarrow \mathfrak{M}_4 = \mathbb{P}^1 \setminus \{0, 1, \infty\}.$

Examples. 1. $\mathfrak{M}_3 = \mathfrak{D}_2 = \{pt\}.$

2. \mathfrak{M}_4 has one free marking $\lambda \in \mathbb{P}^1(\mathbb{Q}_p) \setminus \{0, 1, \infty\}$ $\rightsquigarrow \mathfrak{M}_4 = \mathbb{P}^1 \setminus \{0, 1, \infty\}.$

Examples. 1. $\mathfrak{M}_3 = \mathfrak{D}_2 = \{pt\}.$

2. \mathfrak{M}_4 has one free marking $\lambda \in \mathbb{P}^1(\mathbb{Q}_p) \setminus \{0, 1, \infty\}$ $\rightsquigarrow \mathfrak{M}_4 = \mathbb{P}^1 \setminus \{0, 1, \infty\}.$

Definition. A family of dendrograms with n data over a space Y is a map $Y \to \mathfrak{D}_n$ from some p-adic space Y.

Example. $Y = \{y_1, \ldots, y_T\}$. Interpret $t \in \{1, \ldots, T\}$ as time.

 \rightsquigarrow A family $Y \rightarrow \mathfrak{D}_n$ is a time series of *n* non-colliding particles.

Definition. A family of dendrograms with n data over a space Y is a map $Y \to \mathfrak{D}_n$ from some p-adic space Y.

Example. $Y = \{y_1, \ldots, y_T\}$. Interpret $t \in \{1, \ldots, T\}$ as time.

 \rightsquigarrow A family $Y \rightarrow \mathfrak{D}_n$ is a time series of *n* non-colliding particles.

Particles with collisions: \rightsquigarrow compactify \mathfrak{M}_n .

But this is another story . . .

5. Distributions on dendrograms

Given dendrogram $\mathscr{D}(S)$ for data $S = \{x_1, \ldots, x_n\}$.

Want to insert further datum $x \notin S$ into classification scheme.

5. Distributions on dendrograms

Given dendrogram $\mathscr{D}(S)$ for data $S = \{x_1, \ldots, x_n\}$.

Want to insert further datum $x \notin S$ into classification scheme.

Idea: Classifier \rightsquigarrow Assign probabilities to vertices of $\mathscr{D}(S)$ depending on x.

5. Distributions on dendrograms

Given dendrogram $\mathscr{D}(S)$ for data $S = \{x_1, \ldots, x_n\}$.

Want to insert further datum $x \notin S$ into classification scheme.

Idea: Classifier \rightsquigarrow Assign probabilities to vertices of $\mathscr{D}(S)$ depending on x.

Result: A family of dendrograms for $S \cup \{x\}$ with variable x+ a probability distribution. **Definition.** A universal *p*-adic classifier C for *n* given points is a probability distribution on \mathfrak{M}_{n+1} .

Borel σ -algebra on \mathfrak{M}_{n+1} generated by the Berkovich open sets.

Definition. A universal *p*-adic classifier C for *n* given points is a probability distribution on \mathfrak{M}_{n+1} .

Borel σ -algebra on \mathfrak{M}_{n+1} generated by the Berkovich open sets.

Let $X \in \mathfrak{M}_{n+1}$ with skeleton $\sigma(X) \in \mathfrak{D}_n$

 $\rightsquigarrow \mathcal{C}$ induces a measure on $X = \mathbb{P}^1 \setminus S$

 \rightsquigarrow probability distribution on $\sigma(X) = \mathscr{D}(S)$ (renormalisation)

Definition. A universal *p*-adic classifier C for *n* given points is a probability distribution on \mathfrak{M}_{n+1} .

Borel σ -algebra on \mathfrak{M}_{n+1} generated by the Berkovich open sets.

Let $X \in \mathfrak{M}_{n+1}$ with skeleton $\sigma(X) \in \mathfrak{D}_n$

 $\rightsquigarrow \mathcal{C}$ induces a measure on $X = \mathbb{P}^1 \setminus S$

 \rightsquigarrow probability distribution on $\sigma(X)\mathscr{D}(S)$ (r

(renormalisation)

The like for families of dendrograms.

6. Hidden vertices

Definition. A vertex v in a dendrogram \mathscr{D} is *hidden*, if all edges emanating from v are bounded.

I.e. the cluster corresponding to v is non-trivially composed of non-singleton subclusters.

Theorem. Let $\mathscr{D} \in \mathfrak{D}_n$. Then

$$v^{h} \leq \frac{n+1}{4} - b_{0}^{h} + 1$$
(4)
$$b_{0}^{h} \leq \frac{n-4}{3}$$
(5)

and the bound in (5) is sharp.

$$v^h := \#$$
 of hidden vertices in \mathscr{D}
 $\mathscr{D}^h :=$ the subforest of \mathscr{D} spanned by all hidden vertices
 $b^h_0 := \#$ connected components of \mathscr{D}^h ,
measures the internal structure of \mathscr{D} .

Proof. Inductive pasting of trees.

 \Box

7. Conclusions

- Geometric foundation towards *p*-adic data encoding.
- Encoding = embedding dendrogram into Bruhat-Tits tree.
- Embedding uniquely determined by *p*-adic data representation.

7. Conclusions

- Geometric foundation towards *p*-adic data encoding.
- Encoding = embedding dendrogram into Bruhat-Tits tree.
- \bullet Embedding uniquely determined by p-adic data representation.
- $\mathfrak{D}_n \subseteq \mathfrak{M}_{n+1}$
- Moving particles \leftrightarrow family of dendrograms.
- Classifiers via measures on \mathfrak{M}_n .

7. Conclusions

- Geometric foundation towards *p*-adic data encoding.
- Encoding = embedding dendrogram into Bruhat-Tits tree.
- Embedding uniquely determined by *p*-adic data representation.
- $\mathfrak{D}_n \subseteq \mathfrak{M}_{n+1}$
- Moving particles \leftrightarrow family of dendrograms.
- Classifiers via measures on \mathfrak{M}_n .
- Bounds for # hidden vertices and components.

8. Epilogue: symmetric dendrograms

5-adic icosahedron (G. Cornelissen & F. Kato)

3-adic icosahedron (G. Cornelissen & F. Kato)

2-adic icosahedron (G. Cornelissen & F. Kato)